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Asset Allocation

in Transition Economies

Abstract

Designing an investment strategy in transition economies is a difficult task, because

stock markets opened through time, time series are short, and there is little guidance

how to obtain expected returns and covariance matrices necessary for mean-variance

asset allocation. Moments of market returns can be expected to be time varying as

structural changes occur in nascent market economies. We develop an ad-hoc optimal

asset-allocation strategy with a flavor of Bayesian learning adapted to these various

characteristics. Since an extreme event often heralds a new state of the economy, we re-

initialize learning when unlikely returns materialize. By considering a Cornell benchmark,

we show the usefulness of our strategy for certain types of re-initializations. Our model

can also be used in situations when new industries emerge or when companies are subject

to important restructuring.

Résumé

Définir une stratégie d’investissement dans les économies en transition est une tâche

difficile, car l’ouverture des marchés d’actions a été progressive, les séries chronologiques

sont courtes et il existe peu d’éléments permettant d’évaluer les rendements anticipés

et la matrice de variance-covariance nécessaires à l’allocation d’actifs. Les moments des

rendements du marché sont susceptibles de varier dans le temps, à l’occasion de change-

ments structurels. Nous adoptons une stratégie d’allocation optimale d’actifs, fondée sur

un processus d’apprentissage Bayésien, adapté à ces différentes caractéristiques. Puisque

un événement extrême traduit souvent un nouvel état de l’économie, nous ré-initialisons

l’apprentissage lorsque des rendements peu probables se réalisent. En considérant la

stratégie de référence de Cornell, nous montrons la pertinence de notre stratégie pour

certains types de ré-initialisation. Notre modèle peut aussi être mis en œuvre dans des

situations telles que l’émergence de nouvelles industries ou d’importantes restructurations

d’entreprises.

Keywords: Emerging markets, mean-variance allocation, sequential Bayesian learning,

structural breaks.

Mots-clés: Marchés émergents, allocation moyenne-variance, apprentissage Bayésien

séquentiel, ruptures structurelles.

JEL classification: F30, G11, C11, C32.
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1 Introduction

This research is motivated by the puzzling result that, when we solved the mean-variance

asset-allocation problem involving stock indices of several Eastern and Central European

countries as well as the ones of the UK and Germany, using constant estimates of the

means and the covariance matrix, no wealth should be allocated to transition economies.

This result contrasts with anecdotal evidence and has led us to consider various tech-

niques where the moments of market returns are rendered time varying.

A first approach consists in designing regression models, in which explanatory vari-

ables describe conditional moments of market returns. For countries with a long tradition

of relatively stable markets, such moments may be obtained from linear models, GARCH

models or switching regressions. Research that document some degree of predictability

for expected return is by Keim and Stambaugh (1986), Campbell (1987), Fama and

French (1988), Ferson and Harvey (1991). Solnik (1993) forecasts future risk premia and

shows how a simple investment rule may improve portfolio performance. Schwert (1989)

and Whitelaw (1994) also document a set of economic variables that help to predict vari-

ances and/or covariances of returns. For emerging markets, research on predictability of

returns and risk is by Harvey (1995) and Bekaert and Harvey (1997). The implications of

the predictability of emerging markets’ returns on asset allocation is studied in Harvey

(1994). In a preliminary research, the results of which are available from the authors,

we obtain that, for Eastern European countries, market returns cannot be forecast using

simple regressions such as in Solnik (1993).1 A conditional model, therefore, requires a

more sophisticated approach.

We build on the existing sequential Bayesian-learning literature to develop a model

that is suited to transition economies. Contributions to this literature are by Jorion (1985,

1986), Frost and Savarino (1986), Dumas and Jacquillat (1990), or Harvey and Zhou

(1990). Kandel, McCulloch, and Stambaugh (1995) and Kandel and Stambaugh (1996)

imbed predictability within a Bayesian framework. Pástor and Stambaugh (2001) show

1Solnik assumed a stable relation between the risk premium and macroeconomic explanatory vari-

ables. If structural changes occur, as this is likely to be the case in transition economies, it is difficult

to expect such a stable relation. Note also that Harvey (1995) obtained a large degree of predictability

in emerging-market returns, mostly related to local information variables. He did not consider Eastern

European markets, however, since most of them opened only after the completion of the study.

3



how, within a Bayesian framework, one may learn even if there are multiple structural

changes. The estimation of their model requires, however, the availability of long time

series. Comon (2000) shows how extreme realizations may affect portfolio allocation

under learning.

The model that we propose incorporates information gradually by updating param-

eters according to sequential Bayesian learning. If a new stock-market index becomes

available, its link with the other indices gets quantified. Also, when large events occur, we

re-initialize the learning procedure. As such, this model takes into account some speci-

ficities of transition economies. Among these specificities, we have the fact that only

very small samples are available, that new stock markets opened, that the economies

were subject to structural changes, and that structural changes were likely to occur after

a stock market reacted wildly. Our model could also get applied to other contexts where

parameters evolve through time and new series become available. Examples include the

emergence of new industries or companies, or situations where a company gets radically

restructured.

The structure of the paper is as follows. In the next section, we present the countries

involved in our asset-allocation model. Section 3 describes our model. We recall the

way sequential Bayesian learning works and how we modify it to take into account the

specificities of the transition economies. Section 4 describes the asset-allocation problem

that we solve to update the portfolio weights. Our optimum portfolio assumes that the

investor is concerned with return distributions over a single period. In that section, we

also provide a discussion of the Cornell (1979) performance measure. This performance

measure appears to be valuable in situations where no benchmark portfolio exists. In

section 5, we present the results and show that our model may explain the puzzle. For cer-

tain parameters, the Bayesian learning significantly outperforms unconditional moments.

This result is obtained if we neglect transaction costs. In section 6, we conclude.

2 Data

2.1 Country selection and notation

Given our interest in asset allocation, the frequency over which the data is sampled is

important. Most of the studies involving developed markets use monthly data. These
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studies often assume that moments are constant throughout the sample. When moments

are time-varying, certain studies involve weekly frequency, e.g. Kandel and Stambaugh

(1987) or Kandel, McCulloch, and Stambaugh (1995). Moreover, Froot and Ramado-

rai (2001) show that US-based mutual funds tend to reallocate actively their capital in

emerging markets, resulting in important cash flows at a weekly frequency. Since emerg-

ing markets are subject to frequent shocks, we believe that investors will stick to a weekly

rather than to the monthly frequency used in most papers on asset allocation involving

developed economies. Furthermore, even if the data used in asset allocation is updated

at weekly frequency, this does not prevent investors to leave their portfolio unchanged

over longer periods, as the parameters required for the mean-variance allocation remain

constant.

For asset-allocation purpose, we express market returns in a common currency. There-

fore, we need data for stock-market indices and exchange rates. Besides data for the UK

and Germany, we use series for ten transition economies. These countries are Croatia,

the Czech Republic, Estonia, Hungary, Lituania, Poland, Romania, Russia, Slovakia,

and Slovenia. Essentially, the data covers the period from January 1991 to December

2000. Table 1 reports, for each country, the name of the stock index, a label that we

will use throughout, and the date when each series becomes available. This table also

provides some information on the availability of the exchange rates. In our data base,

the Hungarian and Polish stock markets became first available. Stock indices in Croatia

and Romania are available since 1997 only.

We define Ri,t = ln (Pi,t+1/Pi,t), the weekly market return of country i, over the period

from t to t+1, expressed in local currency. We also express returns in a common currency

and since we focus on European stock markets, we consider the Sterling as reference

currency. Thus, we denote by si,t = ln (Si,t+1/Si,t) the return of the foreign currency,

with Si,t the amount of Sterling that may be obtained for a unit of (local) currency of

country i. The market return of country i, denominated in Sterling, is then defined as:

R̃i,t = Ri,t + si,t. Last, the corresponding excess return is defined as: eri,t = R̃i,t − rUK,t,

where rUK,t denotes the UK 7-day LIBOR interest rate over the period from t to t+ 1,

expressed on a weekly basis.2

2The results reported in this paper correspond to returns expressed in Sterling. If we express returns

in German mark, the main conclusions are not altered.
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2.2 Descriptive statistics

As a first look at the data, we compute univariate summary statistics for weekly per-

centage stock returns, expressed in Sterling. Table 2 reports univariate moments and the

test statistics for normality, serial correlation, and heteroskedasticity. We find that mean

returns range between −1% a week in Romania and 0.37% in Estonia. This compares

with the 0.203% for UK and 0.275% for Germany. The large standard error of means in

emerging markets suggests that there are potential gains that can be made by consid-

ering time variation in the expected returns. Volatility of market indices in transition

economies is high when compared to the ones in the UK and Germany. For instance, the

volatility of the Lituanian and Czech indices, which are the least volatile, is nearly twice

as high as for the UK or Germany. This great variability may be due to the fact that

these markets are rather thin. Assets in thin markets have higher bid/ask spreads that

lead in turn to higher stock-price variability. The higher variability of market indices in

emerging markets may, therefore, reflect that a liquidity premium is likely to exist.3 Six

out of the ten Eastern European market returns are found to be left skewed. This result

indicates that crashes are more likely to occur than booms. But, when standard errors

are computed with the GMM procedure proposed by Richardson and Smith (1993), most

of these skewness coefficients are found to be non-significantly different from zero. Con-

trary to what is usually found for mature markets, we obtain a positive skewness in the

Czech Republic, Lituania, Slovakia, and Slovenia. On these stock markets, the largest

increase in return exceeds the largest decrease. These positive jumps may be explained

by political events that led to huge inflows of foreign capital. For all stock markets,

we also obtain a significant positive excess kurtosis. Thus, market-return distributions

have fatter tails than the normal distribution. Finally, we test for normality, using the

Wald statistic (Richardson and Smith, 1993). Under the null hypothesis, skewness and

excess kurtosis are jointly equal to zero. As reported in Table 2, most market returns in

transition economies are not normally distributed, whereas normality of returns in the

two developed markets cannot be rejected over the given sample and frequency.

We obtain a significant serial correlation in squared returns, as indicated by the Engle

test statistics. In most countries, we also find a strong serial correlation in returns, when

measured by the usual Ljung-Box Q test statistic. When this statistic is corrected to

3We are grateful to a referee for reminding this.
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account for heteroskedasticity, however, we do not obtain such a strong serial correlation,

except for Hungary and Lituania.

Table 3 reports the correlation matrix between market returns expressed in Sterling.4

For each pair of stock markets, correlation was computed over the largest sample avail-

able. The magnitude of the correlations is rather large. First, we find a very strong

link between the UK and the German stock indices, with a correlation as high as 0.6.

Second, more developed stock markets in transition economies (the Czech Republic, Hun-

gary, Poland, Russia, with the exception of Slovakia) are rather strongly interrelated, and

they are also more connected with the UK and Germany. Last, less developed markets

are generally characterized by lower correlations, with the exception of Croatia. Over the

period 1997-2000, the Croatian return has been strongly linked to the Czech, Hungarian,

and Polish returns (with a correlation larger than 0.4). Since correlations between mature

and emerging markets are, broadly speaking, rather low when compared with correla-

tions across mature markets alone, portfolio diversification involving emerging markets

is likely to be very helpful to reduce portfolio risk.

3 Bayesian learning

3.1 The model

In this section, we outline a technique that renders the moments of returns time varying

under the specificities described in the introduction. The first specificity, the shortness of

time series, implies that an investor must have some prior of the values on moments of the

data. As time goes by and new observations become available, the investor will update

these priors. This type of learning may be captured within a Bayesian framework.5 We

will now recall how sequential Bayesian updating works, specify the notations and then

extend this framework to other features that are specific to transition economies.

We assume that the vector of excess returns, yt = (er1,t, er2,t, · · · , erN,t)′, is distributed
4The correlations in local currency are available upon request.
5Traditional Bayesian updating can be implemented within the Kalman filter framework, see

Rockinger and Urga (2000) for an illustration involving transition economies.
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normally:6

yt ∼ N (µt,Σt) , t = 1, · · · , T, (1)

where µt and Σt denote the mean vector and the covariance matrix, respectively. If µt

and Σt were known, then they could be used in a mean-variance portfolio allocation.

In practice, investors have to learn the actual values of these parameters.7 Bayesian

updating assumes that µ and Σ follow a certain distribution. Each new observation

yields an update of the distribution. Sequential Bayesian updating is well documented

in the literature, e.g. Zellner and Chetty (1965), Zellner (1971), Box and Tiao (1992), or

more recently Gelman, Carlin, Stern, and Rubin (2000, chap. 3). We assume that the

covariance matrix Σt follows an inverted-Wishard with parameters Λt and νt. Here, Λt

represents the matrix of cumulated centered second moments up to t and νt is a measure

of the strength of belief placed in Λt. Conditional on Σt, the mean is distributed according

to a normal with mean µt and variance-covariance matrix Σt/κt. Here, κt measures the

strength of belief in µt. Traditional Bayesian updating assumes that, starting from some

priors µt−1, Λt−1, κt−1, and νt−1, posterior estimates are given by

κt = κt−1 + 1, νt = νt−1 + 1,

λt = κt−1/κt,

µt = λtµt−1 + (1− λt) yt,

Λt = Λt−1 + λt(yt − µt−1)(yt − µt−1)
′,

Σt = Λt/νt.

Note that, in empirical applications, κt and νt are equal to the number of observations

used for computing moments. This iterative sequence needs to get evaluated, starting

with some µ0, Λ0, κ0, and ν0.

This traditional updating has been used in the finance literature by Brown (1979) or

Frost and Savarino (1986). Some authors provided estimates for prior parameters derived

from the data (see Morris, 1983). Using this empirical Bayesian approach, Jorion (1985)

6We will later show that the assumption of normality at a given time is not incompatible with returns

being non-normal over the sample period.
7We assume in this study that the mean-variance analysis still holds. In other words, we assume that

investors do not change their objective function to explicitly take into account the randomness of the

parameters µ and Σ.
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describes how to obtain an endogenous value for κ0 and µ0. Frost and Savarino (1986)

provide ML estimation techniques for estimating κ0 and ν0. We will later provide an

ad-hoc rule to get priors, in cases where learning gets re-initialized.

We now turn to the other specificities of emerging markets: appearance of new

economies and structural changes. Often, a large movement of a stock-market index

reflects a change in the structure of the economy. Anecdotal evidence of this observation

can be easily provided for transition economies. For instance, when Yeltsin replaced

Gorbachov, worldwide turbulences could be felt in financial markets. Clearly, this was

accompanied by a new policy pursued by Yeltsin. Inspired by models where a change in

structure occurs as a threshold is exceeded, such as in Tong (1993), we will re-initialize

the learning process whenever a return is of a magnitude that is very unlikely to oc-

cur with a normal distribution. We specify a high quantile, and when the return at

time t exceeds this threshold, we start a new learning process. Such a re-initialization

allows to take care of the possibility that completely new situations arise.8 It is these

re-initializations that distinguish our Bayesian learning model from the traditional ones.

Another important feature of our learning process is that we re-initialize the learning

process only for the country where the abnormal event took place, rather than for all

countries. This means that we are able to keep all useful information (see Stambaugh,

1999). Analogously, when a new economy emerges, we start learning its parameters.

Given the shortness of the time series, tools such as GARCH models or switching re-

gressions cannot be estimated. As an alternative, we suggest a rule-of-thumb learning

procedure.

More formally, consider the return of country i at time t. This return should be

distributed marginally as a normal distribution with mean µi,t and variance Σi,t, the

ith element on the diagonal of the covariance matrix Σt. Assume that an extreme event

occurs at time t−1 on market i, for instance that |eri,t−1| exceeds the 99% threshold of the

normal distribution with mean µi,t−1 and variance Σi,t−1.
9 In that case, we re-initialize

8In many models where learning occurs, it is assumed beforehand that only a given number of states

may occur. This is the case with Hamilton’s (1994) switching regression. Models where the space of

states may increase is given by Chib (1998). See also Kim and Nelson (1999) for a review of a large

selection of models allowing several states. There, a large number of data points is, however, required

in the estimation.
9This means that |eri,t−1| > µi,t−1 + 2.326

√
Σi,t−1.

9



the model as will be discussed below.

Since we discard all the past observations for a country i that gets re-initialized, the

weights required for computing the mean vector, λt, and for the covariance matrix, νt,

will differ from one market to the other. Therefore, it becomes necessary to perform a

precise accounting of elements. Concerning the mean vector µt, we now use the (N, 1)

vector κt, with element κi,t corresponding to the number of observations used for country

i. κt is updated as before, κi,t = κi,t−1+1, and the (N, 1) vector of weights for the mean

is defined as λi,t = κi,t−1/κi,t, i = 1, · · · , N . For the matrix of cumulated centered second

moments Λt, since the number of observations for two countries is likely to be different,

we use now a matrix of weights, δt, of dimension (N,N), defined as: δij,t =
√
λi,t · λj,t.

Finally, the covariance matrix is computed as follows. Diagonal terms of Σt (say Σi,t) are

simply obtained by dividing Λi,t by the number of observations used for country i, i.e.

Σi,t = Λi,t/νi,t, with ν i,t = νi,t−1+1. Off-diagonal terms of Σt (say Σij,t) are obtained by

dividing Λij,t by ν ij,t =
√
ν i,t · νj,t.

Therefore, the updating rules become

µt = λt � µt−1 + (In,1 − λt)� yt,

Λt = Λt−1 + δt �
(
yt − µt−1

) (
yt − µt−1

)
′

,

Σij,t =
Λij,t

νij,t
, i, j = 1, · · · , N,

where � denotes the element-by-element product of matrices and In,m is the (n×m)

matrix (possibly degenerated to a row or column vector) of ones.10

In the way our model is conceived, returns on a given day are normal with a given

mean and variance. Because mean and variance vary through time, our model can be

viewed as a model of a mixture of normals. There is an abundant literature, going back

to Clark (1973), that shows that if returns are generated as a mixture of normals, the

unconditional distribution will be non-normal. More recent contributions are by Harris

(1987) and Richardson and Smith (1994).

10For instance, if A = {ai,j} and B = {bi,j}, then A�B = {ai,jbi,j} with A and B two conformable

matrices. Note also that we write Σi,t instead of Σii,t.

10



3.2 Initializing priors

When a new market i opens at time t− 1, or when an extreme event occurs on market i

at time t−1, moments associated with this market are (re-)initialized at time t: κi,t = κ0i ,

ν i,t = ν0i , µi,t = µ0i,t, and Λij,t = Λ0

ij,t, j = 1, · · · , N . Several methods to re-initialize priors

are possible. We suggest that investors wait for some time to see how the market evolves,

for instance for 3 weeks.11 Given the way we construct our prior, we set κ0i = ν0i = 3.

Concerning re-initialization of moments µ0i,t and Λ0

ij,t, we may think to use, in the

usual way, the sample mean and the sample matrix of cumulated second moments over

the last three observations. However, given that the last observation is an extreme event,

it is likely to affect strongly the moments of returns, see also Dumas and Jacquillat

(1990). We would like to emphasize that in our model investors do not predict a crash.

As a crash occurs, they suffer it fully. Because of the crash, moments change in such a

way that, when we run our optimal portfolio choice model, the market is most likely to

be excluded. Our Bayesian approach allows to weight down the crash in the computation

of the moments. Therefore, we introduce three additional parameters α = (αM , αV , αC)

that down-weight the sample estimates of moments. For instance, we initialize the mean

return as µ0i,t = αMyi,t−1, where yi,t−1 =
1

3

∑
3

τ=1 yi,t−τ is the sample mean over the last

three observations (including the crash). We assume αM ∈ [0, 1]. Choosing αM = 1

means that we believe that the sample mean over the last three observations is a rather

accurate estimate of the excess-return mean that will prevail in the future. In contrast,

choosing αM = 0 indicates that we believe that nothing can be inferred from past data

to forecast future returns. In other words, we assume that future returns will not be

affected by the current crash, so that we simply assume zero future returns. We discuss

in the next section how the re-initialization parameters α affect the asset allocation.

We turn now to the covariance matrix. First, we initialize variances as Σ0

i,t = αV s
2

i,t−1,

where s2i,t−1 denotes the sample variance over the last three observations and αV ∈

[0, 1]. Second, covariances are set up such that Σ0

ij,t = αCρij,t−1
√
Σ0

i,t · Σj,t, where ρij,t−1

denotes the correlation estimate just before the extreme event. The choice of αC is

11This is the lower bound to obtain a sensible covariance matrix. Although this assumption may

appear drastic, Borensztein and Gelas (2000) report massive flows of institutional investors around

crises. Notice that our reported results remain quantitatively the same if the time period is extended to

several more weeks.
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quite challenging.12 On one hand, since an extreme event occurred on market i, we are

reluctant to set a large parameter αC , to avoid “contaminating” other stock markets.

On the other hand, some empirical evidence obtained with various techniques indicates

that correlation tends to increase in period of turbulence, so that stock markets are more

related during crashes and booms (Ramchand and Susmel, 1998, Longin and Solnik,

2001). Possible values for αC are
[
−1/ρij,t−1, 1/ρij,t−1

]
, but we typically tried values in

the range [0, 1]. Finally, Λ0

ij,t is set equal to ν0ij,tΣ
0

ij,t, with ν0ij,t =
√
ν0i,t · νj,t.

Note that, in few cases, a second crash occurs during the re-initialization period of the

previous one. In such a situation, we forget the first crash and re-initialize parameters

for the second one using realized excess returns, as describe above.

Note also that, during the re-initialization period, it is assumed that the investors

who use our approach do not invest in country i. This does not mean that no one should

invest during this period. We are aware that this assumption is strong. In particular, it

implies that our investors may by their actions amplify negative movements. We leave

the implications of our model from a general equilibrium point of view to some other

research.

3.3 Assessment of Bayesian learning

The re-initialization parameters are calibrated rather than estimated. Consequently,

we performed several experiments to assess our Bayesian-learning procedure. Table 4

reports some statistics on Bayesian learning. To begin, we indicate first and second

unconditional moments of excess returns.13 We then report averages of first and second

conditional moments of excess returns associated with various sets of re-initialization

parameters α = (αM , αV , αC). We also present the number of re-initializations for each

stock market.

A first result is that the number of re-initializations increases when we decrease the

12Elton and Gruber (1973) emphasize that, whereas the expected return and the variance of an asset

are relatively easy to compute, the correlation between assets tends to be difficult to quantify. They

provide various techniques to measure correlations, however, their model differs fundamentally from

ours. We estimate the correlations directly, whereas they obtain them indirectly via the betas in a single

factor model. Because in our model there is no factor, we cannot adopt their approach.
13The difference of the statistics displayed here and Table 2 is that, now, we use excess returns rather

than returns.
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parameter αV . A low value of αV is associated with a low value of the variance in

case of a re-initialization. This implies that, everything else being equal, a further re-

initialization is more likely to occur since the standardized return is more likely to exceed

the re-initialization threshold. For instance, when we chose α = (1, 1, 1), the number of

re-initializations is 21 in Hungary, 10 in Romania, and 8 in Russia. When we choose

α = (1, 0.5, 1), this number is as high as 32, 17, and 21, respectively. In parallel, the

average conditional standard deviation also decreases with the parameter αV . In most

emerging markets, the conditional standard deviation is lower than the unconditional

standard deviation whatever the re-initialization parameter.

Such a result does not hold for the parameter αM associated with the return re-

initialization. The position of the unconditional mean with respect to the conditional

mean is strongly related to the skewness of the distribution. Positive skewness indicates

that booms are more likely to occur than crashes, so that re-initializing learning is likely

to decrease the conditional mean. We observe such a phenomenon in Lithuania, Slovakia,

and Slovenia. In emerging markets, reducing the parameter αM from 1 to 0 generally

leads to a conditional mean that is much closer to the unconditional mean. This translates

the fact that extreme returns are not persistent.

When we consider the consequences of a change of αC, controlling the weight put on

correlation, we notice that it does not affect conditional mean nor standard deviation.

This suggests that down-weighting correlations does not affect the series of mean and

standard deviation of excess returns of a given country. In contrast, it will have an

impact on the series of covariances and consequently also on portfolio allocation.

4 Asset allocation under Bayesian learning

4.1 The asset-allocation problem

Now, we use our Bayesian-learning procedure to construct a dynamic asset allocation.

First, investors forecast the expected excess return (µt) and the covariance matrix (Σt),

for the period between t and t+1, using the procedure described in the preceding section.

Second, they solve the following mean-variance asset-allocation problem:

max
{wt}

wtµt −
θ

2
w′
tΣtwt, (2)
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wj,t ≥ 0, j = 1, · · · , Nt, (3)
Nt∑
j=1

wj,t ≤ 1, (4)

where wt denotes the column vector of portfolio weights in risky assets, chosen at date t

for the period (t, t+ 1). The weight affected to the riskless asset is therefore 1−
∑Nt

j=1wj,t.

The parameter θ denotes the coefficient of risk aversion. This is exactly the optimization

problem solved by Solnik (1993) to derive his intertemporal allocation (with θ = 2).14

Whenever we take a sum involving a varying number of elements, we assume that the

ordering of the series is such that j runs over the existing series. We assume that there

are no transaction costs. Given that short-selling is not allowed in many countries, we

also do not allow it here. For this reason, all weights are constrained to be non-negative,

as in (3). Inequality (4) also imposes that margin purchases are not allowed. Running the

mean-variance program using the time-varying expected excess returns and covariance

matrix yields a time series of portfolio weights associated with the Bayesian-learning

procedure.15 We deduce the excess return for the period (t, t+ 1) of the portfolio chosen

at time t as:

Rp
t =

Nt∑
j=1

wj,terj,t = w′
tert. (5)

4.2 The performance test

As stressed by Solnik (1993), theoretical international asset pricing models do not provide

a benchmark portfolio that could be used to gauge alternative investment strategies. The

reason for this is that hedging against currency risk requires holding a combination of

the domestic risk-free asset and the world market portfolio plus a position in foreign

risk-free assets. Therefore, the measurement of the performance of our model cannot be

based on a predetermined benchmark. For this reason, we follow Dumas and Jacquillat

(1990), who apply the approach proposed by Mayers and Rice (1979) and Cornell (1979).

Grinblatt and Titman (1990) find that this approach has good properties.

To give a formal intuition of this approach, we consider the excess return of a given

stock-market index j between time t and t + 1, erj,t. Under the assumption of rational

14As emphasized by Elton and Gruber (1997), the optimization over single-period return distributions

yields sub-optimal allocations. This type of allocation yields, however, easily computable solutions.
15We solve this quadratic optimization problem using the GAUSS QP module.
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expectations, it is always possible to write

erj,t = mj,t + ej,t,

where mj,t is the expected excess return, given by some asset pricing model. In the fol-

lowing, mj,t will be chosen as the unconditional excess return. The ej,t is a random

error. Rational expectations imply that the conditional expectation of the error is zero,

Et[ej,t] = 0. Et represents the conditional expectation using all information up to time t.

An informed strategy will be able to make a prediction concerning the error. Assume for

instance that ej,t > 0 and that a given model is able to predict this. This means that the

returns will be higher than they should, conditional on their risk level. Clearly, at time

t, this asset should be purchased or the position increased. This implies that the weight,

wj,t, allocated to asset j at time t, will be positively correlated with ej,t. Formally, we

expect Cov(ej,t, wj,t) > 0. A simple reasoning shows that if news concerning an index

are bad, the same sign should still hold for the covariance. Thus, whatever the news,

we expect for an informed strategy a positive covariance. In our empirical section, the

“informed” investor will be assumed to use the Bayesian-learning procedure to forecast

expected excess returns and covariance matrix at each date t. On the other hand, the

uninformed strategy, based on unconditional moments, will have a zero covariance. “Un-

informed” investors will select the market portfolio, assuming that informed investors

have zero weight in the market.16

We now wish to test whether the Bayesian-learning procedure is valuable. If this

procedure is worthy, an uninformed investor should observe that, when computed with

unconditional mean returns, the expected excess return of the portfolio selected by the

informed investor is larger than the excess return of the market portfolio (selected by the

uninformed investor). In contrast, under the null hypothesis that the Bayesian learning

is worthless, the conditional distribution of excess returns reduces to the unconditional

one. Therefore, an informed investor should obtain the same portfolio excess return as an

uninformed investor. Thus, the performance test designed by Cornell (1979) and Solnik

(1993) consists in comparing the portfolio return obtained by the informed investor (using

the Bayesian-learning procedure) with the expected return of the portfolio measured by

an uninformed investor (using unconditional moments).

16As pointed out by Mayers and Rice (1979) and Cornell (1979), the zero-weight assumption is nec-

essary for the CAPM to hold.
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At this stage, we have to indicate how the uninformed investor computes the un-

conditional moments. On one hand, Copeland and Mayers (1982) suggest to compute

the mean excess return of market j using the whole sample period (including the period

posterior to date t). This sample mean is denoted: mCM
j,t ≡ 1

T

∑T
s=1 erj,s = erj. On the

other hand, Cornell (1979) estimates the mean excess return using data over the sample

period preceding time t. He uses, therefore, mCO
j,t ≡ 1

t−1

∑t−1
s=1 erj,s. The unconditional

covariance matrix is computed in a similar fashion. We, thus, define V CM
t and V CO

t the

unconditional covariance matrix obtained using data over the whole sample period and

data over the sample period preceding time t, respectively. Solnik (1993), using highly-

developed economies, argues that biases due to the use of the whole sample are likely

to be small and estimates an unconditional mean with the largest data sample. Since,

to our knowledge, there is no consensus which sample period should be used, we will

present results for both situations.

Therefore, the expected excess return of the Bayesian asset allocation selected at time

t, computed by an uninformed investor using the unconditional mean, is
∑Nt

j=1wj,tm
k
j,t,

with k =CM, CO. We also define the portfolio uninformed unexpected excess return as

ukt = w′

t

(
ert −mk

t

)
, with k = CM, CO. (6)

Cornell noticed that

E[ukt ] =
∑
j

Cov
(
wj,t, erj,t −mk

j,t

)
=
∑
j

Cov
(
wj,t, e

k
j,t

)
.

In analogy with what has been stated earlier, if the Bayesian-learning model is valuable,

an informed investor will have a positive covariance between asset-jth optimal weight and

unexpected excess return, ekj,t. As a consequence, on average, the portfolio unexpected

excess return, ukt , will be positive. Under the null hypothesis that the Bayesian-learning

procedure is worthless, the realized excess return of the optimal portfolio, R
p
t , is not

significantly different from its uninformed expectation, so that the portfolio unexpected

excess return should be equal to zero on average.

To construct a test of this hypothesis, we define the uninformed variance of the

portfolio excess return. It is computed using optimal weights wt and the unconditional

covariance matrix V k
t :

(σkt )
2 = w′

tV
k
t wt, with k = CM, CO.
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Then, we compute the time series of standardized unexpected excess returns and build

a t-statistic. These are

τ k =
1√
T

T∑
t=1

ukt
σkt

, with k = CM, CO. (7)

For the case where the Bayesian-learning model is worthless, the null hypothesis is τCM =

0 and τCO = 0. By invoking the central limit theorem, both statistics are distributed,

under the null, as a normal, N (0, 1). As a consequence, it is easy to perform a formal

statistical test.

Finally, it is useful to consider how the portfolio excess return would have evolved

through time. For this reason, we define the cumulative excess return, CER, for each

measure of unconditional moments. It is defined as

CERk
t =

t∑
s=1

Ns∑
j=1

wj,sm
k
j,s, with k = CM, CO, (8)

for t = 1, · · · , T − 1. We also define the CER obtained for our Bayesian-learning model,

using realized excess returns:

CERB

t =
t∑

s=1

Ns∑
j=1

wj,serj,s. (9)

As a consequence, plots of these series, as a function of t, and the comparison between

CERB
t on one hand and CERk

t , k =CM, CO, on the other hand, are useful to detect

periods where performance gains were particularly strong.

5 Results

In this section, we discuss the results obtained with our Bayesian-learning model. In

order to implement this model, it is necessary to select a risk-aversion parameter. The

choice of this parameter is rather arbitrary. A large range of parameters has been used in

the empirical literature. Aït-Sahalia and Lo (2000) report several representative values of

the risk-aversion parameter. Best and Grauer (1991) obtain estimates of θ ranging from

2.9 to 3.7. Solnik (1993) uses θ = 2. Kandel and Stambaugh (1996) use values ranging

from one to five, while Aït-Sahalia and Brandt (2001) use values between two and 20.

We adopt, in the following, θ = 5 as the reference level. Risk aversion parameters of 2

and 10 would characterize strongly aggressive and conservative investors, respectively.
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5.1 Unconditional portfolio allocation

As a first case, for various levels of risk aversion, we consider the allocations, w, obtained

by using the unconditional mean and covariance matrix estimated from the entire sample.

In Table 5, we present various results for this unconditional framework. Since we need

to compute unconditional moments, we restrict our allocation to countries for which a

stock-market index is available over a long period of time. Therefore, we consider the

Czech Republic, Hungary, Poland, Russia, Slovakia, and Slovenia, in addition to the

UK and Germany. We thus compute moments over the period from September 1994 to

December 2000.17

Panel A displays the portfolio weights obtained using the optimization program (2).

Investors are allowed to invest in the riskless asset. For very conservative investors, i.e.

with large θ, we find, as expected, that they invest very small amounts in equity (less

than 20%). As risk aversion decreases, the fraction of wealth invested in the risky assets

increases. Interestingly, even for rather low risk aversions, investors put at most 90% of

their wealth in the UK and German indices. This comes from the fact that, during the

period considered, stock markets offered a rather low excess return. We observe that no

money would have been put in the set of transition economies. This suggests that, given

the relatively low level of expected returns, transition economies do not offer sufficient

diversification opportunities, as to offset the rather high level of volatility. These results

are puzzling in the light that international investors actually invest in these economies.

We recall that it is this finding that motivated initially our research.

So far, we considered the consequence on portfolio weights. Another issue is how

much a given strategy would yield in terms of cumulative excess returns (CER). To

answer this question, we present in Panel B of Table 5, for various levels of risk aversion,

the CER, once for the optimal mean-variance allocation, and once for an equally-weighted

investment strategy.

As the level of risk aversion decreases, the mean-variance strategy yields a higher

level of returns. On the other hand, the risk of the strategy increases. As a consequence,

17Including the ten transition economies under study would restrict the sample used for computing

unconditional moments to the period from September 1997 to December 2000. Note that when we

perform this exercice for the ten transition economies, we obtain essentially the same results as those

reported in the paper: Investors would not invest in emerging markets.
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observation of the full sample CER only is misleading. A risk-adjusted measure is given

by the Sharpe ratio. When we contemplate this statistic, we obtain a significant increase

when we shift from equal weights to optimal weights, but only a marginal increase for

higher levels of risk aversion.18 We find that the investor who had invested according

to mean-variance analysis would have realized a significant benefit over the equal-weight

investor.

The results described so far are static. We now turn to investigate the contribution

of the Bayesian-learning rule.

5.2 Conditional portfolio allocation

In Table 6, we follow Cornell, as well as Copeland and Mayers, and present the cumu-

lative excess returns that are required in the performance measurement. In this table,

we use all available transition economies, even if some of them only start in 1997.19 We

present the full sample cumulative excess return, CERCM
T , CERCO

T and the Bayesian one

CERB
T . Then, we present, in the last two columns, the τCM and τCO statistics, given by

equation (7). The first statistics compares the ability of Bayesian forecasts to obtain a

larger portfolio expected return than naive forecasts based on unconditional moments

computed over a full sample (static measure). The second statistic compares the per-

formance of the Bayesian forecasts to the one of naive forecasts based on unconditional

moments computed over the sample period preceding the current period (dynamic mea-

sure). The two statistics are presented for various levels of risk aversion and various

levels of initialization.

Given that the results are qualitatively the same as risk aversions change, we first

focus in our discussion on the one for θ = 5. For this value, we find that, whatever

the level of initialization, the static measure provides a very small CER. In contrast,

the CER is much larger for the dynamic measure. We explain this result by the fact

that in transition economies many events occurred that changed significantly the level of

the mean returns. Using the Bayesian learning, we also obtain very high CER for most

initialization parameters. We find that our Bayesian learning obtains significantly better

18When investors can invest in the risk-free asset, the Sharpe ratio remains constant since the optimal

risky portfolio is invariant.
19If we had excluded these countries, the results would not have been significantly affected.
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expected excess returns than the static measure for low levels of variance re-initialization.

It is marginally better than the dynamic measure. Note that the CER of the Bayesian

learning is systematically larger than the CER of the dynamic measure, while the t-

statistics τCO is sometimes negative.20 This is because the t-statistics is defined as

the sum of standardized unexpected excess return. It appears that the variance of the

unexpected excess return is generally larger when the unexpected excess return is large.

Therefore, when the Bayesian learning outperforms the dynamic measure, it is often

down-weighted by an excessive risk-taking.

We turn now to discuss the changes in performance as the initialization parameters

change. When the re-initialization parameter αV for the variance decreases, moving from

1 to 0.1, we notice an improvement in the t-statistics. As variance becomes smaller, it

means that our model will consider more aggressively even moderate returns as trigger

values for a re-initialization. This result indicates that careful listening to the market is

necessary after a turbulent event occurred, and that, in transition economies, over the

sample considered, it may be necessary to reallocate the portfolio frequently. It also

suggests that realizations corresponding to an extreme event should not be used in the

computation of variances.

As we shift αM from 1 to 0.5, meaning that we down-weight the three-week average,

the t-statistics drop. This shows that investors should, when they rebalance their port-

folios, use past information or, in other words, that persistence in the moments of excess

returns is useful to improve forecasts and thus to obtain a higher portfolio return.

Last, we turn to the initialization of covariances by comparing the situation αC = 1

with αC = 0.5. This means that we down-weight correlation across the markets after a

crash. We find that this does not affect the value of the t-statistics. Therefore, the impact

of correlation changes, for the countries considered, will not be of major importance.

This may be explained by the fact that, in emerging markets, changes in correlation are

dominated by changes in return and variance from an asset allocation viewpoint.

In Figure 1, we display the evolution of cumulative excess returns obtained using

the static and the dynamic measures as benchmarks and using Bayesian forecasts. The

initialization parameter is α = (1, 0.1, 1) and we consider the ten transition economies.

20For instance, in Table 6, for θ = 2 and α = (1,1, 1), the CER is equal to 2.506 for the Cornell

measure and 2.526 for the Bayesian learning. However, the t-statistics, τCO , is estimated to be equal to

−0.757.
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The lowest curve represents the cumulative excess returns for an uninformed investor

who uses all the sample information to compute averages. This corresponds to the

measure chosen by Copeland and Mayers (1982) and Solnik (1993). The curve in the

middle corresponds to the knowledge assumed by Cornell (1979). Last, the highest

curve corresponds to the actual excess returns realized by using Bayesian forecasts. The

difference between the highest and the two other curves, when conveniently standardized,

yields the statistics presented in Table 6.

During the first 100 observations, from 1991 to the beginning of 1993, our informed

strategy is comparable with the uninformed ones. Transition economies, namely Hungary

and Poland, represented an interesting investment opportunity. Our Bayesian learning

would have recognized this performance.

In Figure 2, we display the weights of an investment in the UK and Germany versus

the weight of the global investment in all available transition economies. We notice

that one should have invested aggressively in the transition economies during certain

periods. Returning to Figure 1, we notice that before mid-1993, only small gains were

realized. Figure 2 shows that during this early period wild fluctuations in expected

returns occurred, leading to large switching of the investments. In other words, returns

were hardly predictable, meaning that no information could be gleaned from past returns.

From 1994 on, the dynamic measure remains rather stable, suggesting that the un-

derlying parameters became more stable. Our Bayesian learning had two periods of

higher returns, the first one was due to a higher investment in Hungary in 1994. The

second period, 1996-97 involved Hungary, Poland, Russia, and Slovakia. The gain of our

strategy is, therefore, not only due to a single country but to a portfolio. We notice that

the Bayesian-learning rule yielded returns, which are increasing steadily with respect to

the naive strategies. This suggests that our results are not driven by outliers, but reflect

changes in investment opportunities in transition economies.

6 Conclusion

In this research, we address the issue of what an investor could rationally do to implement

a dynamic asset allocation in transition economies. These economies are characterized

by several specificities. First, new stock markets opened through time. Second, the
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expected returns and covariance matrices of these markets are not well established. Third,

structural breaks are likely to occur.

To overcome these difficulties, we consider a Bayesian-learning model. Our model is

novel insofar as we force a re-initialization of the learning process as returns exceed a

certain threshold. In other words, we follow the intuition that, in transition economies,

extreme changes in market returns are accompanied by a change in expected returns and

covariance matrix.

We find that an asset allocation based on Bayesian forecasts outperforms an equal-

weight strategy. In addition, when compared with a static measure of unconditional mo-

ments, Bayesian forecasts obtain significantly better portfolio expected returns. When

compared with a dynamic measure of unconditional moments, for certain initializations,

Bayesian forecasts remain better even though only marginally. In this light, we believe

that Bayesian techniques may be of value in a asset-allocation strategy involving transi-

tion economies.

Certain reservations can be formulated with respect to our model. Our results are ob-

tained by assuming a single-period optimization rather than a multiperiod optimization.

We also neglect transactions costs.
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Captions

Table 1: This table summarizes the names, the label, and the date when each stock

index and exchange rate becomes available for the investigated economies.

Table 2: This table reports summary statistics for stock-market returns, sampled at

weekly frequency, expressed in Sterling. The first row indicates the date when a series

start. All series end with June 29 2001. nobs is the number of observations in each

series. Standard errors (std. err.) are computed using the GMM procedure suggested by

Richardson and Smith (1993). The Wald statistic tests the null hypothesis that skewness

and excess kurtosis are jointly equal to 0. Under the null, the statistic is distributed as a

χ2 with 2 degrees of freedom. ρ(j) represents the j-th order autocorrelation. Engle(K)

represents the Engle-test statistic for heteroskedasticity obtained by regressing squared

returns on K lags. Under the null hypothesis of homoskedasticity, this statistic is dis-

tributed as a χ2 with K degrees of freedom. Q (K) represents the Box-Ljung statistics

without correction for heteroskedasticity. The statistic with correction for heteroskedas-

ticity is denoted QW (K). Under the null hypothesis of no serial correlation, the statistic

is distributed as a χ2 with K degrees of freedom. At the 95% level, the critical value for

a χ2
4
is 9.94.

Table 3: This table reports cross-correlations between stock-market returns. Correla-

tions are computed using for each pair of stock markets the largest available sample.

Returns are all expressed in Sterling.

Table 4: This table reports statistics on Bayesian learning. We first display uncon-

ditional first and second moments of excess returns for various countries. Using our

Bayesian-learning procedure we obtain series of conditional returns (µt) and covariance

matrices (Σt). We present averages of these conditional means and associated standard

deviations for various sets of re-initialization parameters α = (αM , αV , αC). The pa-

rameters αM , αV , and αC weight, after a re-initialization, the 3-week mean, standard

deviation and covariance used in the learning process. We also display how often in a

given country learning is re-initialized.

Table 5: This table reports the optimal weights and statistics on the optimal portfolio

for various levels of risk aversion θ, when we use unconditional moments. Unconditional
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moments are computed over the period from September 1994 to December 2000 for the

UK, Germany and the six transition economies for which data are available. In Panel

A, we report optimal weights obtained by solving the optimization program (2) — (4),

so that investment in the riskless asset is allowed, but not short sales. In Panel B,

we compare cumulative excess returns (CER) and Sharpe ratios for the optimal asset

allocation reported in Panel A (denoted ‘Optimal weights’) and for an equally-weighted

risky portfolio (denoted ‘Equal weights’).

Table 6: This table presents the cumulative excess return at time T that may have

been achieved for several risk aversions θ and re-initialization parameters α. Using the

portfolio weights obtained with the Bayesian-learning model, we compute the CER for an

uninformed investor who consider a static measure of unconditional moments (Copeland

and Mayers, 1982) as well as a dynamic measure of unconditional moments (Cornell,

1979). We also compute the CER for an informed investor who consider conditional

moments computed with the Bayesian-learning model:

CERCMT =
T∑

s=1

Ns∑

j=1

wj,sm
CM

j,s , CERCOT =
T∑

s=1

Ns∑

j=1

wj,sm
CO

j,s ,

CERBT =
T∑

s=1

Ns∑

j=1

wj,serj,s.

We also present the t-statistics for a test of the null hypothesis that the Bayesian-learning

model is worthless as compared with unconditional moments computed with Copeland

and Mayers (1982) as well as the Cornell (1979) approaches

τCM =
1√
T

T∑

t=1

uCMt
σCMt

,

τCO =
1√
T

T∑

t=1

uCOt
σCOt

.

The ∗ indicates that the statistic is significant at the 5% level.

Figure 1: This figure displays various cumulative excess returns over time. We have

CERCMt =
t∑

s=1

Ns∑

j=1

wj,sµ̂
CM

j,s , CERCOt =
t∑

s=1

Ns∑

j=1

wj,sµ̂
CO

j,s ,

CERBt =
t∑

s=1

Ns∑

j=1

wj,serj,s, for t = 1, · · · , T.
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The distance between CERBt and CERCOt , respectively between CERBt and CERCMt , is

suggestive of the gain in performance of our Bayesian-learning model.

Figure 2: This figure presents the aggregated weights invested either in the UK and

Germany or in the set of transition economies. Weights are obtained by solving the

mean-variance asset-allocation problem (2) — (4) for each date t using the time-varying

expected excess return and covariance matrix obtained with the Bayesian-learning model.

Then, we take the sum of the weights at each point of time by distinguishing the weights

corresponding to the UK and Germany from the transition economies.
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Table 1: Name and date of availability of stock indices and exchange rates

Developed economies

The UK UK FTSE-100 01/01/91 Sterling 01/01/91
Germany GE DAX 01/01/91 Mark 11/01/91

Transition economies

Croatia CR Crobex 02/01/97 Kuna 03/06/94
Czech Republic CZ PX 50 06/04/94 Koruna 01/01/91
Estonia ES Aripaev index 07/04/95 Kroon 12/10/92
Hungary HU BUX 02/01/91 Forint 01/01/91
Lituania LI Litin A 29/12/95 Lita 04/10/93
Poland PO Warsaw General Index 16/04/91 Zloty 01/01/91
Romania RO BET 19/09/97 Leu 01/01/91
Russia RU RUR 01/09/94 Rouble 11/01/93
Slovakia SL SAX16 14/09/93 Koruna 11/01/93
Slovenia SV SBI 03/01/94 Tolar 12/10/92

Stock index Currency



Table 2: Summary statistics for market returns expressed in Sterling

UK GE CR CZ ES HU LI PO RO RU SL SV
beginning date 91/01/01 91/01/01 97/01/07 93/09/14 95/04/11 91/01/08 96/01/02 91/04/16 97/09/23 94/09/06 93/09/14 93/01/03
nobs 522 522 208 381 299 521 261 507 171 330 381 365
mean 0,203 0,275 -0,074 0,064 0,378 0,174 0,051 0,315 -1,009 0,032 -0,113 0,008
   std. err. 0,082 0,102 0,393 0,318 0,443 0,233 0,334 0,344 0,540 0,621 0,385 0,209
standard deviation 2,091 2,803 5,427 4,462 5,985 4,525 4,197 6,693 6,721 8,759 4,796 4,002
   std. err. 0,111 0,170 0,626 0,421 0,762 0,421 0,584 0,493 0,571 0,739 0,940 0,288
skewness -0,210 -0,397 -0,205 0,593 -1,670 -0,152 1,653 -0,333 -0,239 -0,386 2,716 0,459
   std. err. 0,256 0,218 0,365 0,391 0,741 0,575 0,828 0,227 0,332 0,274 1,255 0,304
excess kurtosis 1,753 1,645 3,228 3,016 10,302 6,279 11,933 2,925 1,797 2,436 22,929 2,725
   std. err. 0,694 0,887 1,435 1,232 4,027 1,556 3,200 0,579 0,704 0,704 5,545 0,771
Wald stat. 6,468 3,565 12,124 6,520 6,548 16,464 14,216 25,684 6,523 12,148 19,121 12,520
   p-value 0,039 0,168 0,002 0,038 0,038 0,000 0,001 0,000 0,038 0,002 0,000 0,002
ρ(1) -0,107 -0,103 0,005 0,142 0,109 -0,003 0,329 0,081 0,028 0,115 0,424 0,018
ρ(2) 0,034 -0,029 0,055 0,176 0,168 0,140 0,119 0,040 -0,022 0,158 0,265 0,106
Engle(4) 13,055 27,730 28,116 58,805 30,645 30,825 20,483 46,050 3,268 15,188 51,045 4,689
   p-value 0,011 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,514 0,004 0,000 0,030
Q(4) 10,344 9,512 1,484 24,621 15,305 25,470 32,377 8,218 2,533 15,696 101,648 5,469
   p-value 0,035 0,049 0,829 0,000 0,004 0,000 0,000 0,084 0,639 0,003 0,000 0,243
QW(4) 9,036 5,715 1,298 5,786 7,504 10,946 10,344 4,125 2,459 6,305 6,420 4,304
   p-value 0,060 0,221 0,862 0,216 0,112 0,027 0,035 0,389 0,652 0,177 0,170 0,367



Table 3: Cross-correlations between market returns expressed in Sterling

UK GE CR CZ ES HU LI PO RO RU SL SV
UK 1,000
GE 0.625 1,000
CR 0.351 0.398 1,000
CZ 0.246 0.271 0.478 1,000
ES 0.221 0.262 0.247 0.256 1,000
HU 0.407 0.406 0.513 0.408 0.276 1,000
LI 0.061 0.072 0.239 0.177 0.216 0.205 1,000
PO 0.248 0.281 0.544 0.353 0.276 0.327 0.229 1,000
RO 0.073 0.146 0.146 0.203 0.121 0.255 0.174 0.265 1,000
RU 0.394 0.375 0.316 0.262 0.343 0.393 0.159 0.280 0.203 1,000
SL 0.068 0.061 0.218 0.201 0.146 0.231 0.135 0.163 -0.135 0.113 1,000
SV 0.185 0.239 0.418 0.117 0.148 0.216 0.133 0.113 0.181 0.133 0.163 1,000



Table 4: Statistics on Bayesian learning

α =(α M , α V , α C ) UK GE CR CZ ES HU LI PO RO RU SL SV

mean 0.074 0.146 -0.190 -0.048 0.262 0.045 -0.063 0.189 -1.124 -0.083 -0.226 -0.105
standard deviation 2.092 2.806 5.441 4.468 5.997 4.531 4.206 6.701 6.744 8.775 4.804 4.007
α =(1,1,1)

mean 0.165 0.031 -0.203 -0.234 -0.304 0.237 0.282 -0.299 -0.390 -0.505 0.553 0.027
standard deviation 2.405 3.377 4.378 4.384 5.819 5.665 4.043 8.326 4.453 8.613 6.320 4.040

number 15 13 7 12 10 21 8 13 10 8 5 12
as a % of sample 0.029 0.025 0.034 0.032 0.034 0.041 0.031 0.026 0.060 0.024 0.013 0.033
α =(0.5,1,1)

mean 0.206 0.135 -0.059 -0.254 -0.067 0.332 0.029 -0.033 -0.255 -0.475 0.198 -0.095
standard deviation 2.346 3.238 4.376 4.305 5.616 5.502 3.860 8.010 4.408 8.528 6.013 3.860

number 15 11 6 12 10 19 7 12 10 7 4 12
as a % of sample 0.029 0.021 0.029 0.032 0.034 0.037 0.027 0.024 0.060 0.021 0.011 0.033
α =(1,0.5,1)

mean 0.206 -0.006 -0.164 -0.214 -0.019 0.219 0.207 -0.408 -0.421 -0.530 0.554 -0.151
standard deviation 2.180 2.868 3.586 3.729 4.470 4.773 3.651 7.251 3.667 7.561 6.096 3.335

number 21 28 9 19 23 32 11 21 17 21 7 21
as a % of sample 0.040 0.054 0.044 0.050 0.078 0.062 0.043 0.042 0.101 0.064 0.019 0.058
α =(1,1,0.5)

mean 0.165 0.031 -0.203 -0.234 -0.304 0.237 0.282 -0.299 -0.390 -0.505 0.553 0.027
standard deviation 2.405 3.377 4.378 4.384 5.819 5.665 4.043 8.326 4.453 8.613 6.320 4.040

number 15 13 7 12 10 21 8 13 10 8 5 12
as a % of sample 0.029 0.025 0.034 0.032 0.034 0.041 0.031 0.026 0.060 0.024 0.013 0.033

Average conditional moments

Re-initializations

Unconditional moments of excess returns

Average conditional moments

Re-initializations

Average conditional moments

Re-initializations

Average conditional moments

Re-initializations



Table 5: Optimal weights computed using unconditional moments (sample: 1994:09-2000:12)

Risk aversion UK GE CZ HU PO RU SL SV

θ=2 0,342 0,541 0,000 0,000 0,000 0,000 0,000 0,000
θ=5 0,137 0,216 0,000 0,000 0,000 0,000 0,000 0,000

θ=10 0,068 0,108 0,000 0,000 0,000 0,000 0,000 0,000

CER Sharpe ratio CER Sharpe ratio
θ=2 0,329 0,811

-0,385 -0,751 θ=5 0,132 0,811
θ=10 0,066 0,811

Panel B: CER and Sharpe ratio

Equal weights Optimal weights

Panel A: Optimal weights



Table 6: Cumulative excess returns (all transition economies)

α =(α M , α V , α C ) Copeland & Mayers
CERT

CM CERT
COR τCM CERT

B τCOR

θ =2

α =(1,1,1) -0.152 2.506 1.593 2.526 -0.757
α =(0.5,1,1) 0.015 2.294 0.886 2.209 -1.116
α =(1,0.1,1) 0.057 2.588 3.514* 4.721 1.105
α =(1,1,0.5) -0.158 2.533 1.580 2.364 -0.755

θ =5

α =(1,1,1) -0.044 2.419 1.782 2.898 -0.880
α =(0.5,1,1) 0.088 2.203 0.497 2.191 -1.680
α =(1,0.1,1) 0.037 2.559 3.619* 4.808 1.190
α =(1,1,0.5) -0.048 2.444 1.771 2.834 -0.918

θ =10

α =(1,1,1) 0.013 2.112 1.626 3.004 -1.086
α =(0.5,1,1) 0.126 1.916 0.502 2.146 -1.726
α =(1,0.1,1) 0.012 2.487 3.748* 5.047 1.322
α =(1,1,0.5) 0.014 2.175 1.662 2.971 -1.077

Cornell Bayesian
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