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Conditional Dependency of Financial Series:
An Application of Copulas

Michael Rockinger®* and Eric Jondeau®
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Abstract

We develop a new methodology that measures conditional dependency. We achieve
this by using copula functions that link marginal distributions, here chosen to obey a
GARCH-type model with time-varying skewness and kurtosis. We apply this model to
daily returns of stock-market indices. We find strong evidence of persistence in depen-
dency both for local currency and $ US denominated series. For European stock markets,
we also find evidence that large simultaneous returns of either sign lead to higher subse-
quent dependency. We show that dependency changes through time, as well. For stock
markets within Europe, dependency increased whereas it decreased since the mid 90s
when involving the S&P 500 or the Nikkei. We also suggest extensions for conditional
asset pricing models involving time variation of co-skewness and co-kurtosis.

Résumé

Nous proposons une nouvelle méthodologie permettant de mesurer les dépendances
conditionnelles. Nous utilisons pour cela les fonctions copulas, qui relient des distribu-
tions marginales, que nous supposons de type GARCH avec skewness et kurtosis variant
dans le temps. Nous appliquons ce modeéle aux rendements boursiers quotidiens. Nous
trouvons une forte persistance de la dépendance, & la fois en monnaie locale et en dollar.
Pour les marchés européens, nous obtenons aussi que des variations passées importantes,
quel qu’en soit le signe, entrainent une augmentation de la dépendance. Nous montrons
enfin que la dépendance varie au cours du temps. Elle a augmenté entre les pays eu-
ropéens, alors qu’elle a diminué depuis le milieu des années 1990 lorsqu’elle met en cause
le S&P 500 ou le Nikkei.
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1 Introduction

The aim of this paper is to provide a new methodology to describe the multivariate
conditional distribution of returns in the presence of non-normal innovations. On the
one hand, our methodology builds on so-called “copulas,” i.e. is functions connecting
marginal distributions. On the other hand, we draw on recent advances in the mod-
elization of conditional returns that allow for time-varying second, third, and fourth
moments.

Copula functions are well-studied objects in the statistical literature. At textbook
level, one may mention the contributions of Joe (1997) or Nelsen (1999). These
functions have been introduced to model a joint (multivariate) distribution when only
marginal distributions are known. This type of link between marginal distributions
is particularly useful in situations where multivariate normality does not hold. In
financial applications, it is well established that univariate distributions are fat-tailed.
In such situations, the statistics literature provides only little guidance about what
type of multivariate distribution to chose, i.e. Kotz, Balakishnan, and Johnson (2000).
In a recent application to finance, Embrechts, McNeil, and Strautman (1999) have
used copulas to model extreme values.

Whereas the copula is a rather recent concept, much progress has been made in
the modeling of univariate series with conditional higher moments. For instance, in
the spirit of Engle’s (1982) ARCH and Bollerslev’s (1986) GARCH model, Hansen
(1994) as well as Harvey and Siddique (1999) developed models where the fat-tailed
conditional density has parameters which vary deterministically over time. Whereas
Hansen’s model builds on a generalized student-t distribution, Harvey and Siddique’s
relies on a non-central gamma density. As shown by Jondeau and Rockinger (2000),
some difficulties related to the numerical estimation of Hansen’s model may be over-
come with the use of a sophisticated numerical estimation technique. Premaratne and
Bera (2000) achieve time variation in skewness and kurtosis by using the Pearsonian
densities. Rockinger and Jondeau (2001) use an entropy density. Other recent contri-
butions in this field are by Engle and Manganelli (1999), who focus on the modeliza-
tion of large realizations using quantile regressions. The modelization of conditional
marginal distributions appears, therefore, as being rather well understood.

In this work, we build on Hansen’s (1994) generalized student-t univariate model
to obtain conditional marginal distributions. Then, we use Plackett’s copula function
to link these marginal distributions. Given that the copula function introduces an
explicit parameter that may be interpreted intuitively as a correlation, it is easy to
render this parameter conditional. In other words, our model allows for conditionally
dependent marginal distributions. According to the way in which the dependency

parameter arises, we can also introduce asymmetries in the model, in the spirit of



Engle and Ng (1993), Glosten, Jagannathan, and Runkle (1993), Gourieroux and
Monfort (1992), as well as Zakoian (1994). Our model thus provides an alternative
to multivariate GARCH models. It presents the advantage of allowing for fat-tailed
innovations.

We apply our model to daily returns of stock indices. Our aim is to contribute
to the debate on the relationship between international correlation and stock-market
turbulence. There are several studies of this phenomenon, which is of great impor-
tance for portfolio choice applications. Empirical evidence is often contradictory. For
instance, Kaplanis (1988) uses monthly data of various markets and cannot reject
the assumption of the constancy of the correlation matrix. Ratner (1992) confirms
this result. Koch and Koch (1991) use daily data and find that correlation increases
through time. King, Sentana, and Wadhwani (1994) object that this result is due to
the 1987 stock-market crash. Another strand of the literature is based on the ARCH
framework.! For instance, using multivariate GARCH models, Hamao, Masulis, and
Ng (1990) and Susmel and Engle (1994) measure the interdependence of returns and
volatilities across major stock markets. Longin and Solnik (1995) use monthly data
and a multivariate GARCH model, in which they condition correlation on the S&P
return exceeding a given threshold. They obtain an increase in correlation in S&P
turbulent periods. However, very interestingly most of these results are subject to
the Boyer, Gibson, and Loretan (1997) critique.? These authors show that the cor-
relation between two series appears much higher if the latter are conditioned on one
of the series exceeding a threshold. As a consequence, studies, in which correlation is
computed on a subsample where one of the series exceeds a given level, will find an
artificially high correlation.

More recently, tests of a constant correlation in a GARCH context have been
proposed by Bera and Kim (1996) and Tse (2000). Ramchand and Susmel (1998)
and Ang and Bekaert (1999) estimate a multivariate Markov-switching model and
test the hypothesis of a constant international conditional correlation between stock
markets. Ball and Torous (2000), using a model with stochastic correlation, find that
the correlation does not significantly increase as markets become more turbulent.
Rigobon (1999) develops a model that tests whether dependency changed over a given
time gap. In Longin and Solnik (2000), dependency for monthly data is investigated
with extreme value theory. This theory, however, focuses only on the tails and neglects
the central part of the distribution. A model capturing the tail behavior as well as
the more central part seems, therefore, to be of value.

In the empirical part of this paper we show that dependency is conditional and

1See Hamao, Masulis, and Ng (1990), Susmel and Engle (1994), Longin and Solnik (1995), Bekaert
and Harvey (1995), Karolyi (1995), Karolyi and Stutz (1996), Bera and Kim (1996), Tse (2000).
2See also Forbes and Rigobon (1999).



that there is persistence in dependency for daily stock index returns of five impor-
tant markets. As a consequence of large joint stock market movements dependency
increases.

We also provide evidence that dependency evolves through time. For European
countries we find a symmetric increase of dependency whereas dependencies involving
the S&P500 or the Nikkei are decreasing since the mid 90s.

Our model may also be used for multivariate Value-at-Risk considerations and
the testing of asset pricing models involving conditional higher moments such as
conditional co-skewness and co-kurtosis. The computation of co-skewness and co-
kurtosis is possible in our framework since we focus not only on the tails of the
distribution but also on the entire distribution.

In the next section, we introduce copula functions and derive one particularly use-
ful copula: Plackett’s. In section 3, we first introduce our univariate model allowing
for time-varying volatility, skewness, and kurtosis, and then show how to link the
univariate models with copulas. In section 4, we describe the data and discuss our

results. Section 5 contains a conclusion and ideas for further research.

2 Copula distribution functions

2.1 Generalities

As mentioned by Nelsen (1999, p. 1), the study of copulas is a recent phenomenon
in statistics. Hence, it is not astonishing that copulas have not yet found their way
into empirical finance. In order to understand the usefulness of copulas, consider
two random variables X and Y with marginal distributions F(z) = Pr[X < z| and
G(y) = Pr]Y < y]. In this paper we only consider situations where all cumulative
distribution functions (cdf) are continuous. The random variables may also have joint
distribution function H(z,y) = Pr[X < z,Y < y|. All the distribution functions,
F(-), G(-) and H(-,-) belong to the interval [0,1]. In some cases, a multivariate
distribution exists, so that the function H has an explicit expression. One such case
is the multivariate normal distribution. In many cases, however, a description of
F(-) and G(+) is relatively easy to obtain, whereas an explicit expression of the joint
distribution H(-,-) may be difficult to obtain. This is where copulas come in handy.

We now will define copulas more formally. In the next section we construct a
useful copula for finance applications. We would like to emphasize from the onset
that many results developed in this paper extend to a tri-variate or even higher
dimensional framework. Some of the results, however, only hold for the bi-variate
framework.

Definition 1 A two-dimensional copula is a function C : [0,1]*> — [0, 1] having



three properties:

1. C(u,v) is increasing in u and v.
2. C(0,v) =C(u,0)=0,C(1,v) =v, C(u,1) = u.

3. Yuq,ug,v1,v9 in [0,1] such that u; < us and v; < vy we have C(ug,vy) —
C(ug,v1) — C(uy,ve) + C(uy,vy) > 0.

Property 1 states that when one marginal distribution is constant, the joint prob-
ability will increase provided that the other marginal distribution increases.

Property 2 reveals conditions one would expect for a joint distribution. That is,
if one margin has zero probability the joint occurrence also has zero probability to
occur. Consequently, if on the contrary one margin is certain to occur, then the
probability of a joint occurrence is determined by the remaining margin probability.

Property 3 indicates that if u and v both increase then the joint probability also
increases. This property is therefore a multivariate extension of the condition that a
cdf is increasing.

Furthermore, if we set v = F(z) and v = G(y), then C(F(x),G(y)) yields a de-
scription of the joint distribution of x and y. Having obtained this intuitive definition,

further properties may be obtained.
Proposition 1 If u and v are independent, then C(u,v) = uv.

Proof. The proof of this property follows immediately from the definition of
independent random variables. ®

Proposition 2 (Sklar’s Theorem). Let H be a joint distribution function with mar-

gins F' and G. Then, there exists a copula C such that for all real numbers x,y

H(z,y) = C(F(z),G(y))- (1)

Furthermore, if F' and G are continuous, then C' is unique. Conversely, if F' and G
are distributions, then the function H defined by equation (1) is a joint distribution

function with margins F' and G.

Proof. The proof of the theorem first appeared in Sklar (1959). A relatively
simple proof may be found in Schweizer and Sklar (1974). =

This theorem justifies the importance of copulas for empirical research. We now
show how to obtain a copula that is relevant for finance.



2.2 Construction of a useful Copula

In finance applications, it is necessary to express a positive and negative dependence
between variables. We are now going to construct a copula allowing marginal distri-
butions to be either positively or negatively dependent. This construction will yield
the so-called Plackett’s copula. Plackett’s copula is a way of joining two marginal dis-
tributions. For higher dimensional problems, other types of copula or combinations
thereof could be used.?

Consider Figure 1, where we assume for the moment that we have two random
variables X and Y. Both variables may take two discrete states, say high and low. As
indicated in the figure, we associate probabilities a, b, ¢, d to the various simultaneous
realizations. Intuitively, if along the 45° diagonal the probabilities are high, then we
would have a positive dependence situation. In fact if one state is high, the other
state will be high as well. If along the a, b diagonal there are as many observations as
along the c, d diagonal, then the random variables may be considered independent.

These observations suggest

ab
) = —
cd

as a natural measure of dependency. If # = 1 there will be independence, if § < 1
dependence will be negative, and if § > 1 dependence will be positive. Plackett (1965)
had the idea to associate with the states L the marginal cdf F'(z) and G(y) in [0, 1].
Also, the probabilities a, b, ¢,d may be expressed in terms of the copula function. If
F and G still represent the marginal distributions and H the joint distribution, we

obtain

[F(x) — H(z,y)][G(y) — H(z,y)]
In general, one may expect that, for a given joint distribution, 8 will be a function of

9:

x and y. There may be situations where H does not exist. In such cases one wishes to
create a function C playing the role of H. In other words, one may ask if there exists
a function C' from [0, 1]? into [0, 1], having as arguments v = F(x) and v = G(y), for
which 6 does not depend on = and y.

Tedious but straightforward computations show that the object

ﬁ 1+ (60— 1)(utv) - \/[1 + (0 — 1) (u+v)]* — 4uvf(6 — 1) if 0 # 1,
uv ifo=1,

Co(u,v) =

defined for 6 > 0, satisfies the three conditions that define a copula function. In this
case the function Cy(F(x),G(y)) is the joint cdf of z and y.

3Many other copulas exist. We decided to focus on Plackett’s because of its intuitive appeal and

because many of its properties have already been established.



2.3 Link with traditional dependence measures

In economic applications, and in mean-variance portfolio analysis in particular, a
widely used measure of dependence is given by Pearson’s correlation coefficient, R.
We recall that Pearson’s R is defined for a set of random variables X and Y with

joint distribution H(z,y) and marginal ones, F'(xz) and G(y), as

EXY] - EXJEY]  [aydH(z,y) — [zdF(z) [ydG(y)
Var[X]Var[Y] Var[X]Var[Y]

R:

where
‘w¢m:/@—Emﬂm@)
and similarly for Y. Another measure of association is given by Spearman’s p. It is

defined as the correlation between the marginal distributions. Setting u = F'(x) and

v = G(y), we obtain
E[uv] — E[u]E[v]

B Var|u]Var[v]

It may be shown that

pg = 12/[ . wodC(u,v) — 3 =12 C(u,v)dudv — 3.
0,1

[0,1]2

This observation is very useful, because it allows the verification of the estimation
procedure. Indeed, the dependency parameter § must be close to Pearson’s correlation
of the margins (u,v). For Plackett’s copula, an explicit formula for the correlation is

available, presented in the following proposition.

Proposition 3 For Plackett’s copula, Cy, Spearman’s py is given by

= T @@, oA
’ 0 if 0 =1.

Proof. See Nelsen (1997), p. 138. m
Proposition 4 p, ) = —py.

Proof. The proof follows by replacing ¢ in (2) by 1/6 and rearranging the ex-
pression. The meaning of this result is that one may easily convert a given positive
dependency into a negative dependency. m

Last but not least, it is to be observed that € is only defined for positive values.
In numerical applications, this restriction may be easily implemented by using a
logarithmic transform of . In this case, independency corresponds to a value of
In (0) = 0. If In () is positive, then we have positive dependency and symmetrically

for a negative value.



2.4 Simulation

In many finance applications, such as Value-at-Risk, where models get tested using
simulations, it is necessary to simulate data following a multivariate distribution,
given here by the copula function. One of the techniques used to simulate data
distributed as a Plackett’s copula is based on Johnson (1986). It consists in simulating
an observation from one of the margins and then simulating the other margin using
the copula. This yields the following algorithm:

1. simulate two independent realizations, i.e. u and ¢, distributed uniformly on
the interval [0,1].

2. definea=1t(1—1), b= \/5\/9 + 4dau(l — u)(1 — 6)?

3. compute v = [2a(uf® + 1 — u) + 0(1 — 2a) — (1 — 2t)b]/[20 + a(f — 1)?]

4. u and v will be distributed according to a Plackett’s distribution.

Once margin realizations have been simulated, it is also possible to construct

trajectories for z; and ;.

2.5 Estimation of the model

In practical bi-variate situations, one observes a sample (¢, ), t = 1,---,T. It
is assumed that x; gets generated by a continuous marginal distribution F(-,w;),
where w, represents a vector of parameters. Similarly, y; is generated by a continuous
distribution, G(-, w, ), where w,, is a parameter vector. For instance, F' could represent
a GARCH model describing the marginal distribution of x;.

For convenience, we now define u; = F(zy,w,) and v, = G(y;, w,).* We notice
that the dependency parameter 6 appears explicitly in the copula function. This
means that 6 can be easily conditioned. We define wy as the vector of parameters

involved in the modeling of the dependency parameter. In this case, we may write
et\t—l = O(us—1, V-1, Wp).

It is easy to establish the density of a Plackett’s copula as
9?Cy(u,v) O[1 + (u — 2uv +v)(0 — 1)]
= 5
Budv ([1 + (0 — 1) (u+ v)]* — duvh (6 — 1)) :

co(u,v)

In Figures 2 and 3, we display copula functions for the case of positive dependency,
e.g. § =5, and of corresponding negative dependency, that is § = 1/5. If § = 1, then
the density turns out to be a flat surface corresponding to independence.

Also, writing f and g as the marginal densities, the joint density of an observation

(mta yt) iS,

l(xh Yt; Wy, Wy, w9) = c@(F(xt—l7wz)yG(yt—17wy)§w6)(F($t7 w1)7 G(yt7 wy))f(xh ww)g(ytv wy)'

41n this section we tried to keep the notation as simple as possible.



As a consequence, the log-likelihood of a sample becomes
E((Z’t,yt),t = 1,"

T

Z (ln [CG(F(mtflywz),G(ytfhwy);we)(F($t’ we), Gy, wy))] (3)

t=1

I [f (2, we)] + I [g(ye, wy)]) (4)

Ideally, one would like to maximize the likelihood simultaneously over all the parame-

: 7T7 wxawyawe) =

ters, yielding the parameter estimates written as w,, Wy, ws. In practical applications,
this estimation may be difficult.
First, the dimension of the problem can be large. In such a case, it may be neces-

sary to help the estimation by providing starting values obtained from the marginal

estimations
T
i, € argmaxy I[f(z,w,)), (5)
=1
T
@, € argmax Infg(y,w,)] (6)
=1

Secondly the dependency parameter of the copula function may be a convoluted ex-
pression of the parameters. In such a case, an analytical expression of the gradient
of the likelihood might not exist.> Therefore, only numerical gradients may be com-
putable with the associated slowing down of the numerical procedure.

For complicated situations, it is therefore recommended to use the set (w0, w,, Wy)

obtained by estimating in a first step (5) and (6) before solving for

Wy € argmax L((x, yt),t =1, -, T; Wy, Wy, wy).

2.6 Computing co-moments

In several application such as conditional asset pricing models, it is necessary to com-
pute expressions such as co-skewness or co-kurtosis. Such expressions will typically

involve moments of the form

mm=AméﬁfM@G@%ﬂwM@mwmmy

Such integrals may be efficiently evaluated using a change in variables u = F(z),
v = G(y). With this change we get

Mg = /ue[o,l] /ye[o,l](F_l(u))i(G_l(”))j co(u, v)dudv.

5QOr it may, at least, be a very complicated expression. One such example is provided by our

model where, as shown later and in an appendix, the computation of the gradient involves the
computation of the derivative of a student-t cdf with respect to its parameter. This means that one

would need to know the integral of the derivative of the student-t distribution.

9



For numerical purposes, under the assumption that both F' and G are generated by
a generalized student-t, F'~! and G~! are elementary expressions involving standard
functions. We leave the application of this technique to further research.

In VaR applications, it is necessary to compute the probability that a portfolio
exceeds a certain threshold. Again, once the marginal models are known, the ex-
ceedance probability may be numerically computed as a simple integration using the
fact that if the pair (X,Y") has some joint distribution function C'(F(x),G(y)) then

Pr6X + (1 - 8)Y > 1] = / dC(F(z), G(y)).
Sa+(1—8)y>7

Again, this expression is rather easy to implement numerically.

3 A model for the marginal distributions

Our margin model builds on the GARCH model of Engle (1982) and Bollerslev
(1986).7 It is well known that the residuals obtained for a GARCH model are non-
normal. This observation has led to the introduction of fat-tailed distributions for
innovations. Nelson (1991) considers the generalized error distribution. Bollerslev and
Wooldridge (1992) consider the case of a student-t distribution.® Engle and Gonzalez-
Rivera (1991) model residuals non-parametrically. Even though these contributions
recognize the fact that errors have fat tails, they do not render them time-varying,

i.e., the parameters of the error distribution are assumed to be constant over time.

3.1 Hansen’s generalized student-t density

Hansen (1994) is the first to propose a model where the first four moments are condi-
tional and, therefore, time varying. He achieves this by introducing a generalization
of the student-t distribution. This generalization allows for asymmetries of large re-
turn realizations while maintaining the assumption of a zero mean and unit variance.
The conditioning is obtained by defining parameters as functions of past realizations.

Hansen’s generalized student-t distribution is defined by

()

bc(l—i—i2 beta ) if z < —a/b,

el ) - N ) )
bc(l—i—ﬁ(%)) if z> —a/b

SFor instance, under Fortran, the IMSL routine TIN may be used to compute the inverse of the

student-t distribution.
"The literature concerning GARCH models is huge. Several reviews of the literature are available,

e.g., Bera and Higgins (1993), Bollerslev, Chou, and Kroner (1992), as well as Bollerslev, Engle, and

Nelson (1994).
8For a definition of the traditional student-t distribution, see, for instance, Mood, Graybill, and

Boes (1982).

10



where

az4)\cn_2 =143\ —a? c= F(ﬂg_l) .
n—1 ’ m(n—2)I (%)

If a random variable Z has the density d(z|n, \), we will write Z ~ D(z|n, A). In-
spection of the various formulas reveals that this density is defined for 2 < n < oo
and —1 < A < 1. Furthermore, it encompasses a large set of conventional densities.
For instance, if A = 0, Hansen’s distribution is reduced to the traditional student-t
distribution. We recall that the traditional student-t distribution is not skewed. If in
addition n = oo, the student-t distribution collapses to a normal density.

It is well known that a traditional student-t with 1 degrees of freedom allows for
the existence of all moments up to the nth. Therefore, given the restriction n > 2,
Hansen’s skewed t distribution is well defined and its second moment exists. The
higher moments are not directly given by the parameter 7, although formulas exist

for these moments.
Proposition 5 If Z ~ D(z|n, \), then Z has zero mean and unit variance.
Proof. See Hansen (1994). m

Proposition 6 Define X = bZ + a, and write the jth moment of X as m; = E[X7].

Then X has mean a and standard deviation b. Furthermore

E[Z%) = [m3 — 3amy + 2a°]/V?, (8)
E[Z% = [m4 — 4ams + 6a*my — 3a*]/b?, 9)
where
me = 1 + 3)\%,
(n —2)? :
mg = 16¢ (1 + \?)—L—"—"— if n > 3,
s = AT G )
—2
My = 3%(1 +10A% 4 5A%) ifn > 4.

Proof. Straightforward but tedious computations. m

Since Z has zero mean and unit variance, we obtain that skewness (Sk) and
kurtosis (Ku) are directly related to the third and fourth moments: Sk[Z] = E[Z?]
and Ku[Z] = E[Z*]. Excess kurtosis is defined as XKu = Ku — 3.

We emphasize that the density and the various moments do not exist for all
parameters. Given the way asymmetry is introduced, we must have —1 < A < 1. As

already mentioned, the density d is meaningful only if n > 2. Furthermore, careful

11



scrutiny of the algebra yielding equation (8) shows that skewness exists if n > 3.
Last, kurtosis in equation (9) is well defined if n > 4.°

In the continuous time finance literature, asset prices are often assumed to follow
a Brownian motion combined with jumps. This translates into returns data with
occasional very large realizations. Our model captures such instances since, if 1 is

small, e. g. close to 2, not even skewness exists.

3.2 The distribution of the generalized student-t

The copula involves marginal distributions rather than densities. For this reason, we
now derive the cumulative distribution function (cdf) of Hansen’s density. To do so,

we recall that the conventional student-t distribution is defined by

_ntl

where n is the degree of freedom parameter. Numerical evaluation of the cdf of the

conventional student-t is well known and procedures are provided in most software
packages, and in particular in Fortran, which is the language retained in our study.

We write the cdf of a student-t with n degrees of freedom as

A(t;n) :/t f(z)dz.

— 00

The following proposition presents the cdf of Hansen’s generalized student-t.

Proposition 7 Defining D(t) = Pr{Z < t|, where Z follows the density (7), yields

n

G 1 (A3 BT - ) 4N ez al

D(t) = { (1=1)4 (%Jﬁ 77) if t < —a/b,

Proof. Suppose that ¢t < —a/b. Given the definition of D(t), we have

o\ — 13+
t 1 bz +a
Dt:/ be (14 —— d
() _wc(+n—2<1—A>> ‘

bita (17+_1) 1

—1-3 /"

—co r<§> m(n —2) (Hnlf?) @

:(1—>\)A<1_)\

In empirical applications, we will only impose that 7 > 2 and let the data decide for itself if, for

a given time period, a specific moment exists or not.

12



The second equation follows from a change of variable involving u = (bz+a)/(1 — ).
The last equation follows from a trivial change of variable. In the case where t = —a/b,

we obtain that

For t > —a/b, we have

+1

t 1 bz +a\’ N
D(t) = D(—a/b) + be (1+— <1_)\) ) dz.

n—2

The result now follows from a computation analogous to the case t < —a/b. =
It is easy to verify that D(—o0) =0, and D(o0) = 1.

3.3 A GARCH model allowing for conditional skewness and

kurtosis

Let 4, for t = 1,---,T, be returns of a given series. The margin model that allows

for time-varying volatility and for conditional skewness and kurtosis is defined by

Ty = U+ 2, (10)
u = o, (11)
o = ag+af(z,)? +ai(z,) + a0fy, (12)
& ~ D(e&ln, M) (13)

Equation (10) decomposes the return of time ¢ into a conditional mean, p,, and
an innovation, z,. Equation (11) defines this innovation as the product between
conditional volatility, oy, and a residual, ¢;. The next equation (12) determines the
dynamics of volatility. We use the notation z* = max(z,0) and 2~ = max(—z,0).
Such a specification has been suggested by Glosten, Jagannathan, and Runkle (1993),
and by Zakotan (1994). In a similar spirit, one may mention Campbell and Hentschel
(1992) or Gourieroux and Monfort (1992). Equation (13), specifies that residuals
follow a generalized student-t with time-varying parameters (7,, A;). We defined this
density above.

It is tempting to use for 1, and A; a specification similar to an ARMA(1,1), thus
resembling equation (12). Such a specification is, however, hazardous. Indeed, for
financial data, there exist outliers (such as the October 1987 crash). This in turn
may lead to spuriously significant parameters. To see how such spurious parameters
may arise, let us proceed with a thought experiment. We assume an ARMA(1,1) type

specification for the parameter A such as
)\t =a+ bZt_l + C)\t—l-
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Furthermore, we consider that the data results from i.i.d. normal data. Now, the
estimates of b and ¢ will be small and statistically non-significant. Because of random
variation, b and ¢ will not be equal to zero. Assume that they take positive values. For
our thought experiment, we consider now the replacement of r;_;, the return at time
t — 1, by a large positive perturbation. Had such an event existed in reality, it would
have created heavy tailedness. Because, at time ¢, A; needs to be bounded above by
1, the program will converge to a solution where the impact is undone at time t. This
is achieved by the choice of a large negative ¢ that may appear statistically significant
even if robust estimates of the standard error are used (as suggested by White, 1980).

For this reason, we will use a specification without lagged parameter:

ny = bo+biz1+ boze o, (14)
A = o+ cizim1 + oz, (15)

We also have the following constraints on the parameters aj +as < 1, aj +as < 1,
2 <mn, 1 <A < 1. The first two equations guarantee stationarity for the volatility
process given by equation (12). The following 7" — 2 constraints are necessary to
guarantee that the density is well defined (the first two values n; and 7, are not
needed). The last restrictions involve 2(7T — 2) inequality constraints that guarantee
that skewness will be well defined.

We also experimented with a logistic map and found that the resulting dynamics
of n, and \; differed from ours for extreme returns. One explanation of this finding is
that the logistic map becomes flat, even for relative small deviations from 0, and as
a consequence it is unable to distinguish large deviations from only relatively large
ones. "

A consequence of the way in which we implement the model is that, for simulation
purposes or forecasting experiments, 1, and \; may not obey the restrictions. For such

situations we recommend to truncate the parameters.!!

3.4 Numerical estimation of the marginal model

The estimation of model (10) to (15), under the constraints, represents a formidable
task. Given that the likelihood is defined only if the constraints are not violated,
it is necessary to use an optimization algorithm in which the constraints are always
satisfied. This implies using an interior optimization algorithm. Furthermore, the
sample is of a rather large size and hence the number of constraints becomes very large,

say several thousands. For this reason, speed becomes a very important factor. Given

10This observation also holds with the arc-tangent map.
" This implies for n, < 2 a value of 2.001. If A\; < —1 we set it to -0.999 and similarly if \; > 1
we restrict it to 0.999. The restrictions were only rather seldom binding.
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the structure of our problem, we use a program especially developed by Gill, Murray,
and Saunders (1997, 1999) for large optimizations involving many constraints, called
SNOPT.

For a given set of initial values, this program first verifies that all initial values
satisfy the restrictions. If this is not the case, it searches initial values verifying
the restrictions and that are closest to the proposed initial values with respect to
the Euclidean norm. Next, it uses a sequential quadratic programming algorithm
whereby it is guaranteed that the linear constraints are always satisfied. In appendix

A and B we provide the gradients required for the implementation.

3.5 Specification of conditional dependency

Many different specifications of the dependency parameter are possible. In this paper
we follow Gourieroux and Monfort (1992) and adapt a modelization where 6, is con-
ditional on the position of past joint realizations in the unit square. This means that
we decompose the unit square of joint past realizations into a grid. The parameter
0; will be constant for each element of the grid. More precisely, the basic model

considered in this paper is

16
In(0,) = dil[(ue1,vi1) € Aj
j=1

where A; is the j-th element of the unit-square grid. To each parameter d; an area A;
is associated.'? For instance A; = [0,1/4[x[0,1/4] and Ay = [1/4,1/2[x[0,1/4]. The
choice of 16 subintervals is purely arbitrary. This choice of parameterization has the
advantage to allow the easy testing of various conjectures concerning the impact of
past joint returns on subsequent dependency while still allowing for a large number
of observations per area. For instance one may test if large joint realizations have a
greater impact than small joint realizations on subsequent dependency. This could
be investigated in a test of the null d; = dy4 versus d; > dig.

In other applications, one may question whether dependency evolved linearly
through time or followed some other complex patterns through time. This may be

achieved by setting
In(6;) = do + dyt + dot?, fort =1,---,T.

This parameterization may be viewed as a second-order approximation of a more
general function. It obviously nests the case of a linear trend, dy = 0, and allows for

several evolutions of dependency. Essentially, it represents an arc of a parabola. This

12Figure 6 illustrates the position of the areas A;. How the figure is constructed is discussed in
detail below.
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parameterization allows for a decreasing dependency followed by an increasing one.
This is the case if ds is positive and if there is a minimum, given by t* = —d; /(2ds)
in the sample, i.e. ¢ € [0,T]. If dy is negative, then if —d;/(2ds) belongs to [0,7] a
maximum has occurred at ¢*.!* In this case dependency would have increased and
then decreased. If the extremum occurs before ¢ = 1 then if dy is positive, as ¢t gets
larger, dependency augments quadratically and inversely if ds is negative.

Also, there may be situations in which dependency relies on additional variables.

In such a situation one may chose a model such as
In(0;) = zwy

where z; is a (1 x K) vector of explanatory variables and wy is a corresponding (K x 1)

vector of parameters.

4 Empirical Results

4.1 The data

The choice of data is guided by the fact that we want to investigate the dependency of
stock indices in local currency as well as in the $ US referential. Given that exchange
rates changed from fixed to floating in 1972 we decided to start our study on January
1st, 1975. This eliminates the issue that there may have been some learning by
market participants in the early period. The sample ends with January 24th, 2001.
We downloaded all the data from Datastream. The chosen frequency is daily. To
eliminate spurious correlation generated by holidays we eliminated from the database
those observations when a holiday occurred at least for one country. This reduced
the sample from 6799 observations to 6669. Preliminary estimations revealed that
the crash of October 1987 was of such importance that the dynamics of our model
would be very much influenced by this event. For the S&P500, on that date, the
index dropped by -22%. The second largest drop was only -8.64%. For this reason,
we eliminated the data between October 17th and 24th. This reduces the sample by
6 observations to a total of 6663 observations.

The mnemonics are SP500 for the S&P 500, NIK for the NIKKEI, FTSE for the
Financial Times stock index, DAX for the Deutsche Aktien Index, and CAC for the
French Cotation Automatique Continue index. We also have Japanese, UK, German,
and French exchange rates with respect to the dollar.

Descriptive statistics'* show that stock-index returns are more volatile than cur-

13Tn numerical implementations, it may be necessary to rescale t for instance by using In(6;) =
do + d1(t/k) + da(t/k)?,Vt where & is a scaling factor such as 103.
14 Available on request.

16



rency returns.'® For all series, the assumption of normality may be rejected using the
Jarque-Bera test. The Engle test statistic reveals strong evidence of heteroskedastic-

ity for all series.

4.2 Estimation of the marginal model

Table 1 presents the results of the general model with possible asymmetries in the
impact of past good and bad news on conditional volatility and where skewness and
kurtosis are time varying. The last row of that table presents a likelihood-ratio test
statistic of the restriction of our general model to Bollerslev’s (1986) GARCH (1,1)
model where we assume that innovations follow a generalized student-t distribution
with constant parameters. This test corresponds to the null of aj” = a; and b; = by =
c1 = ¢ = 0.1% The likelihood-ratio test statistic, distributed as a x? with 5 degrees
of freedom, rejects the restrictions for all series. It is possible to separate the test of
the impact of asymmetry, i.e. of a = a; from the impact of past realizations on the
tails of the distribution. Since both tests turned out statistically significant, we only
report the results of the joint test.

A discussion of the actual impact on skewness and kurtosis of the various signs of
the b; and ¢;, 7 = 1,2 parameters is not straightforward since both the asymmetry
parameter, )\, and the tail-fatness parameter, 7),, are closely entangled. Nonetheless,
inspection of the parameters involved in Table 1 reveals that for most estimations, the
parameters ¢; and ¢y are positive and in particular so for ¢; + co. Another regularity
is that b1, b9, and the sum b+ by tend to be negative. These regularities lead to the
following dynamics: Subsequent to a large negative shock, the asymmetry parameter
¢, also takes a negative value implying that the density of the innovations will have
a fatter left tail. This impact is reinforced by the positive impact on 7, that generally
controls the left and right fat tailedness. Subsequent to a large positive shock, the
impact of the directional parameter )\, and the tail-fatness parameter 7, offset each
other and the global impact cannot be inferred directly.

We, thus, confirm the results of Harvey and Siddique (1999) that a negative return
has an impact on different levels. First, subsequent to a negative return, as compared
to a positive return of the same magnitude, volatility increases. This is the well-known
impact documented by Campbell and Hentschel (1992), Glosten, Jagannathan, and
Runkle (1993), as well as Zakotan (1994). The impact in the extremes is expressed

through the density via A; and 7,. The impact of this negative return is also to

15This observation suggests that the results will not be very much affected by the choice of
numeraire. We report in this paper mostly results for local currency returns and only sketch those

in the $ US referential. We also checked the stability of our results using a pound sterling referential.
16We do not present the results of the estimation. The estimates are available on request.
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increase the left tail of the distribution, increasing the probability of a subsequent

large negative event.

4.3 Estimation of the multivariate model
4.3.1 Parameter estimates

For all stock-market pairs available, we estimate the multivariate model. We present
in Figures 4 and 5 scatterplots of the marginal cumulative density functions v and
v. We notice that many points are distributed in the shape of a cross. These are
associated with days when returns are very small or zero. We notice, furthermore,
that except for the region where one margin is large and the other small, the unit
square is rather uniformly filled with realizations. For the DAX-CAC pair, there is,
in addition, a higher concentration along the diagonal. This is suggestive of the fact
that the dependency of the French and German stock markets is higher than for the
American and Japanese markets. From a modeling point of view, these scatterplots
suggest that even if we introduce 16 areas for the conditioning, each one will contain
enough observations so as to yield good estimates.

It should be emphasized that these scatter plots are unable to tell anything about
temporal dependency. To establish if a temporal dependency exists or not, it is neces-
sary to estimate the dynamic model. We now turn to the discussion of the parameter
estimates. Figures 6 and 7 present the estimates and the associated standard errors
of the various d;. Whereas Figure 6 presents the estimates for the SP500-NIK pair,
Figure 7 presents those of the DAX-CAC pair. Inspection of the parameter estimates
of Figure 6 reveals that the extreme elements along the diagonal, (d; = 1.7579 and
dig = 1.6108), take rather similar values and that these values are larger than those
at the center of the diagonal, (d¢ = 1.4621 and dy; = 1.4102). This observation
suggests that subsequent to a joint large variation, i.e. both u and v simultaneously
very large or very small, the dependency is higher. In terms of returns, this implies
that simultaneous large positive or large negative returns yield subsequent increased
dependency.

Inspection of the off-diagonal elements, and especially those where one return is
large and positive and the other is large but negative, i.e. ds and d;3 reveals that
dependency is much smaller subsequent to such an event. The point estimate d;3 is
nearly a third of d; = 1.7579. As may be expected from the scatterplot presented in
Figure 4, the associated standard error is also larger.

The rather loose statements made so far will be formally tested below. Before
doing so, we present in Figure 7 the same parameter estimates for the DAX-CAC
pair. We first notice that the value taken by the parameters is larger that for the
previous pair. This may be explained by the fact that the dependency of these series
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is higher, as we noticed already in Figure 5. For instance, the diagonal elements now
take values ranging from 2.0331 for dg up to 2.3325 for di5. The standard errors of
these estimates is of a similar magnitude as for the SP500-NIK pair. This translates
into higher t-ratios, meaning that the temporal dependency will be more pronounced
for the DAX-CAC pair. We also notice that the pattern of magnitude of the estimates
in this figure is of similar magnitude that the one of Figure 6, i.e. diagonal extreme
estimates, (dq,dg), are larger that the central elements, (dg,d11), and on-diagonal

elements are larger than off-diagonal ones.

4.3.2 Formal tests of conditional dependency

We now turn to the formal tests of the conditional dependency relations presented
in Table 2. All the statistics shown in this table are based on Wald tests.!” A first
test investigates if the piecewise constant grid of the u-v unit square yields truly
different values for the d; or not. This test corresponds to the null hypothesis if
dy = dy = - -+ = djg versus inequality for at least one pair of elements. The p-values
presented in Table 2 reveal a rather uniform message. Except for the SP500-FTSE
and NIK-FTSE pairs, dependency is conditional on past joint realizations. For certain
stock-market pairs such as the FTSE-DAX, FTSE-CAC, and DAX-CAC, this relation
is even very strongly significant.

The next test checks if joint bad news (u and v in the lower left area) induce greater
dependency than joint good news (u and v in the upper right area). Formally this
corresponds to a test of d; = dyg versus d; > dig. Inspection of the test 2 statistic and
its associated p-value shows that this test is rejected only for the NIK-FTSE and the
FTSE-DAX pairs. Unlike the univariate finding by Campbell and Hentschel (1992),
i.e. that bad news create greater volatility, at the multivariate level we are unable to
detect a similar pattern for correlation.

We may now pursue the tests with investigating if large joint return realizations,
be they of positive or negative sign, yield to higher dependency than if returns are
small. We formulate this question as a test of the null hypothesis d; = dg = d1; = d5
against dy = dyg > dg = dq1. Inspection the test 3 statistics shows that for most cases
the null cannot be rejected. Exceptions are the SP500-NIK and especially the stock-
market pairs situated within Europe: the FTSE-DAX, FTSE-CAC and DAX-CAC
pairs. This means that within Europe, stock markets tend to be more dependent
subsequent to joint return realizations. One may view this finding as evidence that
there is persistence of dependency within Europe.

Given that we found under test 1 evidence of conditional dependency for most

17For certain tests such as test 1, a likelihood-ratio test may also be performed. We found that
the Wald test yielded similar results to a likelihood-ratio test.
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countries, there remains the question whether some regularity may be established.
Building on previous observations that there is some evidence that realizations of
returns of the same sign yield further dependency, one is tempted to formulate a
weaker test. This test investigates if dependency is higher subsequent to a joint
variation than after opposite variations, i.e. the null is dy = dg = d11 = dig = di13 =
dg = dyy = d3 = dy = dg against dy = dg = dy; = dyg > di3 =dg = dyy = dz = dy =
dg. We find, as the last two lines of Table 2 reveal, that this test is indeed rejected for
nearly all countries. Again the three European stock markets distinguish themselves
with particularly high values of the test (5.42, 7.32, and 7.01) all having zero p-values,

since these tests are distributed as a normal under the null and the test is unilateral.

4.3.3 Tests for $ US denominated series

We now present some results in order to investigate how the results change when the
stock indices are converted into $ US. As a first stage, we study if the dependency
parameter In(f) is affected by a change of numeraire. In Table 3, Panel A presents
those estimates in local currency denomination. We find that dependency is the
rule between all stock-market pairs. Panel A also presents the test if the results are
dependent on the choice of the margin model. We construct a likelihood-ratio test
based on a restriction of the margin model to a GARCH(1,1) without time variation
in skewness and kurtosis but still with generalized student-t distributed errors. For all
pairs, we strongly reject the simple GARCH(1,1), model. Thus, this test corroborates
our using a model with time-varying skewness and kurtosis.

In Panel B, we present the same tests as in Panel A yet in a $§ US referential.
We find that the restriction to a simple GARCH(1,1) is still rejected. Turning to
the dependency parameter, we notice that, for those country pairs where one of
the series is the SP500, the unconditional dependency is smaller. For instance for the
SP500-NIK, In(#) drops from 1.42 to 1.21 and similarly for the SP500-CAC where the
estimate falls from 1.59 to 1.26. We also notice that for country pairs not involving
the SP500, dependency rises. This observation may be explained by the fact that
dollar variations introduce additional dependency.

We now turn to Panel C that replicates the tests of Table 2. Test 1 is slightly
weakened in that, now, for many cases the test of no conditional dependency cannot
be rejected. This test is of course rather weak and if one tests for more specific
patterns these may turn out statistically significant. Test 2 and Test 3 show that
elements along the diagonal have no privileged role to play. In most cases, neither we
find that joint large negative returns have a greater impact on dependency than joint
positive returns, nor that joint large returns of any sign affect dependency more than

small joint realizations. We turn, now, to test 4, investigating if the diagonal elements
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play a more important role than elements far from the diagonal. We find that all test
statistics, except the one for the SP500-NIK and the SP500-FTSE, are significant.
This corroborates the previous finding that dependency will be higher subsequent to
joint stock market movements. We can reformulate this by stating that dependency

is persistent even if one changes numeraire.

4.4 Dependency as a function of time

Previous research, see Longin and Solnik (1995), also investigated if dependency
varied as a function of time. Whereas they used monthly data and a linear time
trend, we decided to focus on daily returns and a quadratic trend. We report the
results for local currency denominated series. This implies that there will be no
contamination due to possible Dollar movements. Table 4 presents the results of this
estimation.

The first question to which we turn is if there has been a change of dependency
through time. This is tantamount to a test of the null hypothesis d; = dy = 0
against d; # 0 and dy # 0. We perform this test with a likelihood-ratio test. For all
series, except the SP500-NIK and the NIK-CAC, we find that dependency changed
with time. If ds is different from zero, then the specification represents a parabola,
thus, there will be a minimum if ds is negative, or a maximum if ds is positive. Also
when an extreme occurs, it may take place before, in or after our sample. The last
line displays the occurrence of this minimum. A dash indicates that the extremum
occurred before our sample started.

For the FTSE-DAX, FTSE-CAC, and the DAX-CAC, the minimum took place
before our sample started. However, among these pairs, only for the DAX-CAC pair
do we find a significant parameter d,. This implies that for the three European pairs
dependency increased. Only for the DAX-CAC there is a faster than linear trend.

Turning to the other pairs, we notice that the d; estimate is always positive and
that the ds estimate is always negative. This implies a pattern where dependency
increased up to a certain period of time and then decreased. Focusing only on those
pairs for which ds is significant, we obtain for the SP500-DAX an increase of de-
pendency till July 1991 followed by a decrease. Similar dates are June 1982 for the
SP500-CAC, October 1993 for the NIK-FTSE and March 1990 for the NIK-DAX.
It should be noticed, however, that the parameter is badly estimated for the SP500-
CAC pair. As a consequence, lots of uncertainty surrounds the date of this latter pair.
Considered together, for the first seven pairs except for the SP500-NIK and the NIK-
CAC, there appears a decrease in dependency since the mid 90s. This observation is

of importance for portfolio allocation purposes.
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5 Conclusion

For many years, the traditional mean-variance framework developed by Sharpe, Lint-
ner, and Markowitz has been the reference for portfolio management. This framework,
involving only first and second moments, seems overly simplistic as testified by the
many contributions to Value-at-Risk which focus on large deviations. Early theoreti-
cal contributions as by Kraus and Litzenberger (1976), Friend and Westerfield (1980),
Barone-Adesi (1985), and Ingersoll (1990) extend the traditional framework by intro-
ducing higher moments such as skewness and kurtosis. In this light, it is astonishing
that no more effort has been made to test portfolio models involving higher moments.
An exception being Harvey and Siddique (2000), who test a portfolio model involving
higher moments. One possible reason is that presently there exists no technique to ex-
press these higher moments in a conditional multivariate framework which also allows
for non-normality of innovations. Our framework appears to provide the necessary
technology within which this type of model may be tested.

We apply this model to daily returns of stock-market indices over the period from
1975 till the beginning of 2001. We find strong evidence of persistence in dependency
both for local currency and $ US denominated series. For European stock markets,
we also find evidence that large simultaneous returns of either sign lead to higher
subsequent dependency. We also find evidence that dependency changed through
time. For stock markets within Europe, dependency increased whereas dependency
involving the SP500 or the NIKKEI decreased over the recent period.

Our model may also be used to investigate the dependency properties of other
markets than considered here. For instance, it may be of interest to consider emerging
markets. The volatility spillovers among such markets have been investigated for
instance in Beakert and Harvey (1995) and in Rockinger and Urga (2001). This
framework may also be used to investigate the spillover of large realizations.

Furthermore, a straightforward extension of our framework could yield a model
for the joint distribution of returns, volume, and duration between transactions. For
instance, Marsh and Wagner (2000) investigate the return-volume dependence when
extreme events occur. In this case, one could use a tri-variate copula or one could
proceed in successive steps, modeling first the dependency between volume and du-
ration using a first copula. Then, in a second step, one could link this copula to the
returns series through another copula. Hence, our model may be adapted to settings,

where the data of each margin is not of the same nature.
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Appendix A

In the following appendix, we present the computations of the gradient of the
log-likelihood for the margin model. To simplify notations, we focus on the gradient
of a single observation. Summation of these gradients yields the sample gradients.
We define d = (br/o + a)/(1 — As) where s is a sign dummy taking the value of 1 if
br/o +a < 0 and s = —1 otherwise. We also define v; = 1+ d?/(n — 2). We recall
that the likelihood of an observation is

[=In(b) +1n <F (77_—51)) - l11r1(7r) —=—In(n—2)—1In <g) —In(o) — d —; ! In(vy).

To obtain the gradients with respect to the various parameters ag by, by , co, a1 bi1, b2,
a1.ba1, bao, we decompose the problem and make frequent use of the chain rule of

differentiation. The necessary ingredients to obtain the gradients are:

ol _ 1 m+11 2d  br

do o 2 wun—2(1=\s)o?

Next we have
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To obtain 0l;/0n, we proceed similarly. First, we notice that dc/dn = ¢d1n(c)/dn

and
Tl = -5 (3)
B = -2 -7+ el - D7 = (-2 - 17,
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where W(-) is the derivative of the log of the gamma function. This derivative is
known as the di-gamma or psi function, which may be implemented with desired
accuracy. The Fortran library IMSL implements this function.

Now, we can compute the partials with respect to the actual parameters by using:

dag 0o\ daq
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Appendix B

In the following appendix, we provide elements useful to maximize the copula

density and will point out a limitation of this technique. We have

Olnc l—i— u—2uv + v ~32(utv) +2(0 — 1)(u+v)? — 4uv(20 — 1)
00 0 1+ (u—2uw+v)(0—-1) 2 [1+(0—1)(u+v)] —4uvd(d — 1)
dlne (1—-20)(0—-1) 32[1+ (0 —1)(u+v)](0 —1)—4v(0 —1)
u I+ w—2w+0v)@—1) 2 [1+(0—1)(u+v)?—duwd(6—1)
Olnc (1—2u)(0—1) 321+ (0 —1)(u+0)](0 —1) —4u(d —1)
v 1+ (u—2uvt0)(d—-1) 2 14 (0 —1)(u+0)] —4ub(0 —1)

We notice now that u and v being cdfs will involve parameters. This implies that if
derivatives with respect to those parameters are required it will be necessary to use

the chain rule. For instance, if u = Fx(z,wx), then

Owx ~ ou wa

(B.1)

This computation reveals that the explicit computation of the score is far from being
trivial. In our model the marginal cdf is given by the D function. Inspection of
the required derivatives to compute (16) shows that one would need a technique
to compute the integral of a derivative of a student-t with respect to the degree of
freedom parameter. To our best knowledge such a technique does not exist though
it may be obtained using continuous fractions or similar numerical approaches. We

leave such developments for further research.
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Table 1: Parameters of the margin model with asymmetric GARCH and time varying

skewness and kurtosis.

Each individual series of returns {r;}}_; is modeled as a GARCH with time-varying skewness
and kurtosis. Formally: r4 = p +yt, y¢ = orer, 07 = ag + af (y;" 1)? + a7 (y; 1)* + ago? 4,
where ¢ follows a generalized student t with parameters A; and 7; whose dynamics is n; =
bo + b1ys—1 + bayr 2 and Ay = co + c1yr1 + c2yr 2.

The first line, time, presents the required time for the estimation. Lik is the value of
the log-likelihood. LRT is the likelihood ratio test statistic of the restriction af = a] and

b1 = by = ¢1 = cg = 0. Bold numbers are statistically significant.

SP500 NTK FTSE DAX CAC
time 39.16 32.73 60.37 40.75 57.34
ag 0.0065  0.0070  0.0156  0.0142  0.0150
(0.003) (0.002) (0.004) (0.003) (0.004)
af 0.0250  0.0406  0.0623  0.0641  0.0629
(0.013) (0.008) (0.008) (0.009) (0.010)
aj 0.0641  0.1378  0.0770  0.1028  0.0966
(0.026) (0.021) (0.009) (0.015) (0.016)
as 0.9474  0.9108  0.9128  0.9053  0.9124
(0.0156 ) (0.0132) (0.0101) (0.0124) (0.0127)
bo 6.8378  5.0170  20.2651  9.0528  5.7035
(3.160) (0.328) (4570) (1.223) (0.470)
by 02773 -0.2965  -1.5395 -0.4133  -0.4075
(4.337)  (0.034) (2361) (0.133) (0.064)
b 04703  -0.2051  0.0035 -0.9013 -0.3315
(1.532) (0.033) (3.663) (0.266) (0.051)
co -0.0067 -0.0467 -0.0565 -0.0399  -0.0226
(0.014) (0.013) (0.019) (0018) (0.014)
o1 0.0433  0.0317  0.0397  0.0210  -0.0135
(0.028) (0.013) (0.017) (0.015) (0.012)
¢y 0.0587  0.0046  0.0485  0.0382  0.0401
(0.005) (0.012) (0.015) (0.017) (0.013)
Lik. -8150.94  -8238.39  -8778.08  -8979.88  -9196.59
LRT 46.13 109.69 19.55 35.22 32.59
p-value 0.0 0.00 0.00 0.00 0.00




Table 2: Test of restrictions on the conditional dependency parameter.
Estimates for local-currency denominated stock indices.

All test statistics of this table are Wald tests. Test 1 tests the null hypothesis that all the parameters describing the dependency parameter 8 are
constant, i. e. dy = dy = --- = dyg. This statistic is distributed as a X2 with 15 degrees of freedom.

Test 2 tests the null if dy = dyg versus d; > dig, that is if large joint variations lead to higher subsequent dependency than if joint variations are small.
This test is unilateral and normally distributed.

Test 3 tests if dy = dg = d11 = dig versus di = dig > dg = dq1, that is if large joint variations lead to higher subsequent dependency than if joint
variations are small.

Test 4 tests if dependency is higher subsequent to a joint variation than after opposite variations, i.e. the null is d; = dg = d11 = dig = di13 = dg =
d14 = d3 = d4 = dg against d1 = d@ = d11 = d16 > d13 = dg = d14 = d3 = d4 = dg.

SP-NIK SP-FT SP-DAX SP-CAC NIK-FT NIK-DAX NIK-CAC FT-DAX FT-CAC DAX-CAC

Test 1 32.61 14.04 32.71 26.30 14.49 29.30 26.04 61.49 102.80 64.10
p-value 0.01 0.52 0.01 0.03 0.49 0.01 0.04 0.00 0.00 0.00
Test 2 0.53 -0.18 -0.06 -0.08 1.51 0.96 -1.16 2.01 1.01 -1.14
p-value 0.30 0.57 0.52 0.53 0.07 0.17 0.88 0.02 0.16 0.87
Test 3 1.65 -0.95 -1.38 -0.65 0.74 1.38 0.59 1.88 2.85 1.88
p-value 0.05 0.83 0.92 0.74 0.23 0.08 0.28 0.03 0.00 0.03
Test 4 1.16 2.28 3.94 3.60 1.25 1.43 1.62 5.42 7.32 7.01

p-value 0.12 0.01 0.00 0.00 0.11 0.08 0.05 0.00 0.00 0.00



Table 3: Comparison of dependency for local currency and for $US denominated stock indices.

Panel A presents the estimates of the unconditional dependency parameter under the assumption that the marginal distributions are GARCH with time
varying skewness and kurtosis. Residuals follow a generalized student t. If In(f) = 0 then margins would not be dependent. LRT tests the restriction
to non-time varying marginal models (af‘ =a] and by =by =c¢1 =2 =0).
Panel B presents the same estimates and tests as Panel A but using $US denominated stock indices.
Panel C presents Wald tests of similar nature than presented in Table 2.

Panel A

SP-NIK SP-FT SP-DAX SP-CAC NIK-FT NIK-DAX NIK-CAC FT-DAX FT-CAC DAX-CAC
In(6) 1.42 1.00 1.42 1.59 0.80 1.25 1.47 1.26 1.64 1.85
se 0.04 0.04 0.04 0.04 0.05 0.05 0.04 0.04 0.04 0.04
Lik. -16065.66 -16689.22 -16684.22 -16875.54 -16902.39 -16969.45 -17135.13 -17341.98 -17310.74 -17409.90
LRT 70.81 61.26 63.21 58.42 122.37 140.37 133.61 52.08 47.85 95.44
Panel B

SP-NIK SP-FT SP-DAX SP-CAC NIK-FT NIK-DAX NIK-CAC FT-DAX FT-CAC DAX-CAC
In(6) 1.21 0.93 1.27 1.26 1.12 1.54 1.53 1.58 1.82 2.15
se 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03
Lik -17988.49 -17939.12 -17902.40 -17975.65 -19771.25 -1964K8.29 -19742.56 -19385.06 -19198.72 -18978.34
LRT 68.14 47.84 58.35 28.85 82.21 109.49 61.45 39.53 6.58 37.17
Panel C

SP-NIK SP-FT SP-DAX SP-CAC NIK-FT NIK-DAX NIK-CAC FT-DAX FT-CAC DAX-CAC
Test 1 17.08 5.76 29.81 15.05 19.73 17.11 29.60 31.17 53.50 37.52
p-value 0.31 0.98 0.01 0.45 0.18 0.31 0.01 0.01 0.00 0.00
Test 2 -0.23 -0.46 0.27 0.46 0.27 0.53 0.01 0.28 0.77 -0.96
p-value 0.59 0.68 0.40 0.32 0.39 0.30 0.50 0.39 0.22 0.83
Test 3 2.45 -0.04 -0.64 -0.92 2.53 0.75 -0.66 1.72 0.11 0.71
p-value 0.01 0.51 0.74 0.82 0.01 0.23 0.74 0.04 0.46 0.24
Test 4 -0.58 -0.40 1.95 2.29 1.22 2.88 3.34 3.88 6.52 5.30
p-value 0.72 0.65 0.03 0.01 0.11 0.00 0.00 0.00 0.00 0.00



Table 4: Test for a time variation in dependency

This table presents the results of the estimation of In(6) = do + d1(¢/1000) + d2(¢/1000)? that is if dependency varied through time. The likelihood
ratio test LRT tests if there is a dynamics, i. e. if dy = d2 = 0 versus d; # 0 and ds # 0. Standard errors are presented between parenthesis. The given
dynamics represents a parabola. If ds is negatif (positif), then for large values the parabola presents a(n) downward (upward) trend.

The last line indicates when the parabola reached an extremum. A dash indicates that the extremum took place before the sample starts.

SP-NIK SP-FT SP-DAX  SP-CAC  NIK-FT NIK-DAX NIK-CAC FT-DAX FT-CAC DAX-CAC

time 0.71 0.94 0.61 1.21 0.87 0.88 0.72 0.66 1.09 1.04
do 1.2643 0.7507 1.0027 1.6402 0.0954 0.7948 1.5593 0.2642 0.3084 1.0965
(0.1360) (0.1145) (0.1235) (0.1138) (0.1501) (0.1812) (0.1328) (0.1239) (0.1421) (0.1433)
d1 0.0768  0.1249 0.2624  0.0855 0.3891 0.3099 0.0125 0.2350 0.3309 0.0392
(0.0903) (0.0809) (0.0799) (0.0795) (0.0985) (0.1130) (0.0915) (0.0785) (0.0832) ( 0.0866)
d2 0.0070  -0.0110  -0.0311  -0.0224  -0.0404  -0.0400  -0.0084  0.0117  0.0108 0.0389
(0.0127) (0.0117) (0.0112) (0.0116) (0.0140) (0.0155) (0.0134) (0.0108) (0.0110) (0.0116)
LRT 2.26 7.05 13.97 13.95 31.14 11.00 4.43 264.10  455.17 276.43
p-value 0.32 0.03 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00

extr. Date 96/07/19 97/02/24 91/07/11 82/06/16 93/10/25 90/03/02  77/11/21 - - -
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Figure 6.

u=0v=1 u=1v=1
0.5503 1.2751 1.2774 1.6108
(0.4430) (0.2115) (0.2180) (0.2117)
d13 d14 d15 d16
1.5356 1.5027 1.4102 1.7977
(0.1968) (0.1247) (0.1182) (0.1416)
dg d10 d11 d12
v
1.5704 1.4621 1.2995 1.6748
(0.1514) (0.1083) (0.1237) (0.1631)
d5 d6 d7 dS
1.7579 0.9248 0.6687 0.9196
(0.1761) (0.2273) (0.3204) (0.3986)
dy dy ds dy
u=0,v=0 u=1v=0



Figure 7.

u=0v=1 u=1v=1
1.4232 1.0314 1.6947 2.3525
(0.4281) (0.2562) (0.1728) (0.1143)
di3 d1a dis dig
1.2481 1.7690 2.0922 2.0220
(0.2286) (0.1208) (0.1130) (0.1261)
dg d1o di1 dia
v
1.7502 2.0331 1.8200 1.5379
(0.1334) (0.0919) (0.1118) (0.1796)
d5 d6 d7 dS
2.1529 1.8571 1.2849 1.1403
(0.1324) (0.1617) (0.2282) (0.5088)
u=0,v=0 u=1v=0
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