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Abstract

The entropy principle yields, for a given set of moments, a density that
involves the smallest amount of prior information. We first show how entropy
densities may be constructed in a numerically efficient way as the minimization
of a potential. Next, for the case where the first four moments are given, we
characterize the skewness-kurtosis domain for which densities are defined. This
domain is found to be much larger than for Hermite or Edgeworth expansions.
Last, we show how this technique can be used to estimate a GARCH model
where skewness and kurtosis are time varying. We find that there is little
predictability of skewness and kurtosis for weekly data.
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1 Introduction

Methods based on the entropy principle of Shannon (1948), and popularized by Jaynes
(1957, 1982), have made their way into econometrics, e.g. Golan, Judge, and Miller
(1996). At a practical level, entropy-based applications still appear to be scarce but
for a few exceptions such as Zellner and Highfield (1988), Hawkins, Rubinstein, and
Daniell (1996), Stutzer (1996), Buchen and Kelly (1996), Zellner, Tobias, and Ryu
(1997), or Ormoneit and White (1999). One possible reason is that difficulties with
the numerical implementation of this technique may have hindered its widespread use.
The aim of this work is to develop a very fast method to obtain entropy densities
and to show that entropy densities may also be used in rather complex empirical
likelihood estimations.

In a numerical application, we reconsider Bollerslev’s (1986) GARCH model which
extends Engle (1982).! In typical applications of this model, the unconditional dis-
tribution is assumed to allow for some form of fat-tailedness, modeled for instance as
a student-t (Bollerslev, 1987), a generalized error distribution (Nelson, 1991), or as a
fully non-parametric density (e.g. Engle and Gonzales-Rivera, 1991). Recent appli-
cations to finance, dealing with the issue of conditional fat-tailedness, involve models
with a non-central gamma distribution (Harvey and Siddique, 1999) or a generalized
student-t (Hansen, 1994), where the degree of freedom and the asymmetry parameter
are time varying. There, the time variability is achieved by expressing the degree of
freedom or an asymmetry parameter as a function of actual data. As an alternative to
these densities we propose the use of an entropy density (ED). The advantage of the
ED is that skewness and kurtosis appear directly as parameters. As a consequence,
to obtain the value of skewness and kurtosis it is not necessary to compute additional
functions of more primitive parameters.

ED can also be conveniently used in non-parametric econometrics or in financial
applications such as in modeling the pricing kernel arising in Euler equations.?

A better description of the conditional behavior of asset returns with a particular
emphasis on the time-variability of skewness and kurtosis is of great relevance for risk
management as well as for asset allocation problems. An econometric description in-
volving higher moments may also have important implications for the testing of asset
pricing models (e.g. Kraus and Litzenberger, 1976). Improvements to the existing
econometric literature on the time-variability of higher moments are, therefore, rele-
vant. A possible reason why little progress has been made in financial applications is
that there exist only very few densities where skewness and kurtosis appear directly
as parameters. An exception are the Gram-Charlier and Edgeworth expansions. The
skewness and kurtosis domain of these densities has been investigated by Jondeau and
Rockinger (2001) and has been found to be too small to correctly describe financial
returns. In this work we demonstrate that entropy-based methods allow for a very
large range of possible values for the parameters. This implies that greater numerical

!See also Bera and Higgins (1992) or Bollerslev, Engle, and Nelson (1994) for surveys of the large
literature dealing with this type of model.

2See for instance Gallant and Tauchen (1989) for an application involving a non-parametric
estimation of a density within an Euler equation.



stability will be achieved during the estimation, since the latter may be performed
for less restricted parameters.

This method’s gain in flexibility does not come for free since the construction of
an ED from its moments involves a numerical optimization. In general, numerical
optimization is a very time consuming process. However, given the special nature
of the entropy problem, it is possible to construct EDs with only a few numerical
iterations (e.g. Agmon, Alhassid, and Levine, 1978, 1979a, 1979b as well as Mead
and Papanicolaou, 1984) by mapping the problem into a minimization of a very well
behaved potential function.

The structure of this paper is as follows. In the next section, we provide theoretical
considerations concerning EDs. In section 3, we introduce a model, in the spirit of
Hansen (1994) where we allow for time-varying parameters. In section 4, we present
the empirical results. The last section contains a conclusion.

2 Theoretical background

2.1 The definition of entropy densities

We assume that the econometrician is seeking a probability p(z) defined over some
real convex domain, D, while disposing only of information on the m first moments
of the probability, written as b; where ¢ = 1, ..., m. The construction of a probability
density defined on infinitely many points with the knowledge of only a few moments
is hopeless without an additional criterion. A first possibility to obtain a density,
matching the given moments, is to use ad-hoc step functions. Such an approach
is implemented by Wheeler and Gordon (1969). Another criterion is given by the
maximization of an entropy under the moment and density restrictions. Under this
criterion one solves:

p € argmax — /xGD p(z) In(p(x))dx, (1)
s.t. /{EGD p(r)de = 1, (2)
/mED s'p(x)dr = by, i=1,...,m. (3)

We will refer to a density satisfying these conditions as an Entropy Density.® Jaynes
(1957) notices that the entropy is a criterion where the statistician imposes a minimum
amount of information. The conventional way of solving this program is to define the
Hamiltonian

m

H=- /Dp(:z:) In(p(x))dx — )\S/Dp(x)d:z: — Z)\i

i=1

‘p(z)dx — b;| .
/D:z:p(:c) x

The )y is a Lagrange parameter! as are the \;, i = 1,...,m.

3Given that a log-function is involved in (1), p(z) >0, Vz € D.
4The double prime has been introduced for notational convenience only.



To obtain a solution of this problem one seeks a zero for the Fréchet derivative.
Defining Ay = Ay + 1 we get

§H =0 = p(z) = exp (—XO — f}m) : (4)

Derivation with respect to the m+ 1 Lagrange multipliers yields the m + 1 conditions
(2) to (3).

Equation (4) shows that the density will belong to the Pearsonian family.” For
small values of m, it is possible to obtain explicit solutions. If m = 0, meaning that
no information is given, beyond the fact that one seeks a density, then one obtains
the uniform distribution over D. As one adds the first and second moments, Golan,
Judge, and Miller (1996) recall that one obtains the exponential, and the normal
density. The knowledge of the third or higher moment does not yield a density in
closed form. Only numerical solutions may provide densities. In this work, we show
how densities may be obtained in a numerically efficient manner if third and higher
moments are given. This work extends, therefore, Zellner and Highfield (1988) as well
as Ormoneit and White (1999) by providing a more efficient estimation technique.

Substitution of (4) into (2) defines a function that turns out to be a potential
function, as shown later. The expression of this function is

PO, Am) = exp (=) = /Dexp (f} /\x> dz (5)

so that .
p(z) = exp (Z /\ixi> JP(M, -5 Am). (6)
i1
For a given set of A = (Ay,---,A\n)’, one could evaluate (6) and, thus, the mo-
ment restrictions (3). This suggests as a first estimation technique non-linear least
squares (NLLS) applied to (3). As we rediscovered painfully, such an estimation
yields multiple solutions and is rather slow.® As discovered by Agmon, Alhassid, and
Levine (1979a, 1979b), a faster and numerically stable procedure is available. This
procedure uses the physical properties of the entropy definition. In order to use this
procedure, it is convenient to introduce further results.
Since [p p(z)dxr = 1, multiplication of the right hand side of (3) by this integral
and the grouping under one single integral yields

/(avZ —b)p(x)de =0, i=1,---,m.
D

Furthermore, writing p(x) = exp (Ao + X7, Ai(z' — b;)), where g = A\ + 7, \ibs
indicates that the number of computations required to evaluate (6) subject to (3)

%See, for instance, Johnson, Kotz, and Balakrishnan (1994).

6The technique developed by Ormoneit and White (1999) follows, however, this approach. They
show how such a NLLS algorithm may be implemented more efficiently as in Zellner and Highfield
(1988), yet, they report estimations lasting several seconds whereas ours takes a fraction of a second.



may be reduced. Also, the passage from X to \g is a trivial linear transformation.
Again, p(z) must satisfy (3) and this yields a definition for A¢:

Qs ) = exp(—Ag) = /D exp @; iz — b,-)) dz. (7)

So that the probability can be rewritten as

p(z) = exp (Z (2" — b1)> JQA1, -y Am). (8)
=1
At this point we have obtained two equivalent definitions for the density, namely
equations (6) and (8). Depending on the situation, one definition or the other is
useful.

With the definition of (7), we obtain that

9@
gz—a/\i—

0= /D(mZ —b)p(z)dr =0

and, therefore, the zeros of the gradient of () yield the first-order conditions. This
computation validates the claim that Q defines a potential.” Next, we obtain that

__0Q J
Gi = grav = | @ =)@ = b)p(a)da,

showing that the Hessian matrix is a variance-covariance matrix.® As a consequence
the Hessian matrix is symmetric and positive definite. An inverse of the Hessian will
exist if the matrix is of full rank. This last condition implies that, as long as p(x) is
a density, the minimization of () has a unique solution. We write the gradient of ()
as g and his Hessian matrix as G.

At this stage, we have obtained the first key result, namely that the minimization
of the potential function ) will yield a density satisfying moment the conditions. We
insist on the fact that the key step to obtain a solution resides in a minimization rather
than in a search for a zero of a map. It turns out, that, numerically, the minimization
is well defined, whereas the search for a zero may even yield multiple solutions. The
problem will be numerically stable if ) is of full rank and if the solution is finite.

As Agmon, Alhassid, and Levine (1979a) point out, it is not guaranteed that the
minimization of the potential function will occur at finite distance. It is possible to
guarantee finiteness of the solution, but to do so it is first necessary to define how to
compute the integrals involved. We turn to this issue now.

"If U is an open subset of R a map f from U into R is called a wvector field. For instance, if
F is a scalar function from U into R, then f =grad F' defines a vector field. If for a given vector
field f there exists a scalar function F' such that f =grad F then F is a potential function and the
vector field f is said to derive from a potential.

8See also Alhassid, Agmon, and Levine (1978).



2.2 Gauss-Legendre approximation of the integrals

The construction of ) always involves the computation of an integral. For numerical
purposes, it is convenient to assume finiteness of D. Under the assumption that D is
a finite interval [[, u], the affine function

z=1[2x— (u+1)]/(u—1)

will map z € [l,u] into z € [—1,1]. The Jacobian is (u — [)/2. In this case, using a
generic notation, all our integrals change from

/luh(x)d:c to /1 u;lh<%[z(u—l)+(u+l)]> d,z:/1 h(z)dz.

-1 —1

This last integral may now be approximated using a Gauss-Legendre quadrature (e.g.
Davis and Polonsky, 1970), that is

1 n
/1 h(z)dz ~ Ziz(zj)wj
_ =
w; are the Gauss-Legendre weights and z; are the abscissa, in [-1,1], where the inte-
grand should be evaluated. Those values are tabulated, for instance, in Abramowitz
and Stegun (1970).

We may now return to the computation of the entropy density. For given z; €
[—1,1], j = 1,--+,n and boundaries [, u of the domain D, we may use

v = [(u— 0z + (u+1)]/2 (9)

to obtain the equivalent of z; in the domain D.
With this approximation, we face the problem of minimizing the potential

Q) = jilexp <f} (@ — bz-)> w,.

To guarantee that the Hessian is of full rank, given the way the (z;, w;) are obtained, it
is necessary to have 2n > m. Under this condition, even if the problem is symmetrical
(for instance because the mean and skewness is 0), the Hessian will be well defined.

Introducing a matrix A with elements a;; = a:; —b,i=1,---,m; 3 =1,---,n,
n > m, we obtain Q(A) = w' exp(A\) where w' = (w1, ---,w,) is a row vector with
the n weights.? This expression shows that, in numerical applications, the evaluation
of () can be vectorized and rendered very fast.

The minimization will yield a solution, since, under the stated assumptions, the
matrix A’A is of full rank. This follows from the fact that the transformation from
z; into z; is not degenerate.

To obtain finiteness of the solution, Agmon, Alhassid, and Levine (1979) point out
that, for any direction taken, () should increase to infinity as A gets large. However,
this condition is difficult to implement and an alternative consists in verifying the
existence of a solution to the conditions (2) to (3), i.e. obtaining p; > 0,i=1,---,n.

YWe interpret the vector \ as a column vector.

6



2.3 Numerical implementation

At this stage, we wish to show how the existence of a finite solution can be guaranteed.
The discretization of (2) and (3) yields

ijpj = 1 (10)
j=1
ija:;pj = b, 1=1,---,m, (11)
j=1
Dj Z 07 ]:L;n (12)

This set of equations can be viewed as a linear programming problem where one seeks
a solution to m + 1 equations under positivity constraints. We solve this problem
with the phase I step of the simplex algorithm (see for instance Press, Teukolsky,
Vetterling, and Flannery, 1999). If a solution exists, the algorithm will find it within
m+ 1 and 2(m + 1) steps.

If a solution exists, then it is known that ) will be minimized for some finite
solution. The problem, then, is one of numerically minimizing (). As pointed out
by Fletcher (1994), many algorithms are available. However, if the problem is known
to have a single minimum, as it will be the case in this framework, Newton’s method
works well. It is this method that we implement to minimize the potential.

Algorithm 1:

1. We first need to define the domain D over which the density will be defined. We
restrict ourselves to the range [I, u]. Below we discuss how [ and u may be obtained.
We use a n =40 point gaussian quadrature. This quadrature associates to the points
zj € [—1,1] the weights w;, j = 1,---,n, where n = 40.1°

2. Using (9) we map the z; into x;. We also define the matrix A whose jth
line contains (yj,yf- — b1, -,y — by). We recall that Q(\) = w’ exp(A)) where
w' = (wy,- -, Wy).

3. Set k = 0. Use as a starting value A¥ = (0, ---,0) the vector with m zeros.

4. At step k, set g = 0Q(A*V)/0), and G = 82Q(AEV) /9NN, The
element gi(k) will be the ith element of a column vector ¢*) with m components.
Similarly, GZ(-;-C) is the jth element of the ith line of the matrix G*.

5. Let 6% be the solution to GF§*) = —g*).

4. Update the vector of Lagrange multipliers \(®) = \*=1) 4 k)

6. Set £ =k + 1 and return to 4 unless a required accuracy has been obtained.

In step 1 of the algorithm it is necessary to chose the bounds [/ and u. This choice
is relatively easy if the entropy density is used in an empirical likelihood context. It
suffices to choose boundaries somewhat larger than the range of studentized data. If
one is interested in the general construction of an ED, a possible criterion is based on
the accuracy of the approximation. This accuracy may be computed with a numerical

The (zj,z;) for j = 1,---,n are tabulated for values of n up to 96 in Abramowitz and Stegun
(1970). We found that for our problems n=40 is sufficient.

7



integration of the various moments using the estimated ED. This computation is
also a verification that the number of abscissa z; used in the gaussian quadrature is
sufficient.

The Newton algorithm is based on the observation that if G®6® = —g*) then
the approximation in a second-order Taylor expansion of (), that is Q()\(kfl) +06 (k)) =
Q()\k_l)—l—é(k)g(k)—i—%é(’“)/G(’“)é(k), leads to a flat spot of ), that is an extremum. In step
6 of the algorithm, a typical criterion to stop iterating is given by the euclidean norm
of the vector ¢g'®). For most cases considered in this work the algorithm converged
within 10 iterations with a precision of the gradient ¢(*) smaller than 10=%. This
speed is remarkable and makes it possible to use the entropy densities in situations
that were not possible before. Once the parameters \ have been obtained the value
of the ED at some point = may be obtained using equation (8).

Agmon, Alhassid, and Levine (1979b) also suggest the use of an orthogonalized A
matrix. We followed their suggestion and included in our algorithm a Gram-Schmidt
orthogonalization. For the problem at hand, such an orthogonalization did not lead
to an improvement of the speed of convergence towards an optimum.

2.4 Entropy densities for a given skewness and kurtosis

In statistical applications, it is easy to standardize a given sample r;,t = 1,---, T,
by subtracting its mean and dividing by its standard deviation. For this reason, we
focus now, without loss of generality, on the study of those densities that satisfy
by = 0,bo = 1,b3 = s, and by = k. In this case, the parameters s and k represent
skewness and kurtosis, respectively. Since a solution to our problem, defined by
equations (10) to (12), exists only if the simplex phase I problem is well behaved, we
start with a rough grid-search over a large skewness-kurtosis domain where a solution
to the simplex algorithm might exist. Given the obvious symmetry of the problem, we
only consider the case of positive skewness. We performed this grid-search by using
values of kurtosis ranging from 0 to 15 and with step-length of 0.5. For skewness
we took a grid ranging from 0 to 6 with a step-length of 0.25. For each skewness
and kurtosis pair on the bi-dimensional grid, we ran the phase I part of the simplex
algorithm.!’ We found that the authorized domain will be convex; i.e. there are no
disconnected regions from the one determined with high accuracy below.

Once we got an idea of the general shape of the authorized domain, we performed
a search of the exact boundary for a given kurtosis using a bisection algorithm de-
termining the boundary up to a precision of 107%. Figure 1 displays the graph of the
boundary in the kurtosis-skewness space. The actual domain over which EDs exist is
symmetric with respect to the horizontal axis. For convenience we only present the
upper half of the existence domain. Points located under the curve are compatible
with some ED. We call this domain £. Comparison of the possible domain with the
one obtained for instance in polynomial approximations involving Hermite expansions
(e.g. Barton and Dennis, 1952, or Jondeau and Rockinger, 2001) indicates that EDs
are defined over a much larger set of possible values of skewness and kurtosis.'?

T All computations in this research were done under GAUSS on a WINDOWS 98 platform.
121 those contributions it is shown that skewness and kurtosis must be in the interior of a



In later numerical computations, it will be necessary to restrict skewness and
kurtosis to the domain £ to guarantee the existence of a density. For this reason
we consider a functional description of the authorized domain.'®* An OLS fit of
k = a s*+bs+cindicates that for k > 1 the skewness range is [—s*(k), s* (k)] where'!

(k) = {—b+\/b2—4a(c—k;) /(2a), k> 1. (13)

Next, we consider how the ED behaves as skewness, s, and kurtosis, k, vary.
In Figure 1, we trace various pairs of skewness and kurtosis, represented by stars,
the density of which is represented in Figures 2 and 3. Inspection of these figures
reveals a rich pattern of possible densities. For densities with small kurtosis, the
probability mass is squeezed towards the center. Introduction of skewness then leads
to multi-modal densities. For densities with large kurtosis and skewness, given the
assumed finiteness of the boundary, a small hump in the tail of the distribution will
accommodate the skewness.!> We obtain that EDs may be of use in situations where
the tails of the distributions are much thinner than the tails of the normal density.
Inversely, k£ may become very large allowing for rather thick tails.

3 A model with autoregressive heteroskedasticity,
skewness, and kurtosis

3.1 The model

In this part of the paper, we wish to illustrate the usefulness of EDs by showing
how Bollerslev’s (1986) GARCH model can be extended to allow for time variation in
skewness and kurtosis. Hansen (1994) considers a similar model where innovations are
modeled as generalized student-t. The generalized student-t does not allow for humps,
hence, intuitively, the skewness-kurtosis range is smaller than for EDs. Moreover, a
direct description of the parameters as skewness and kurtosis is not possible. Hansen’s
contribution also allows for an asymmetry of the density.
The general model we consider is given by

re = p+y, (14)
Yo = 016, (15)
€ ED(O,l,St,kt), (16)

domain similar to an elipse. Kurtosis may vary from 0 to 4 and the maximal allowed skewness is

V6/4/3 4+ /6 = 1.04 for a kurtosis of /6 == 2.45.

13In Jondeau and Rockinger (2001), the boundary constraint was imposed using a linear interpo-
lation. This way of imposing the boundary conditions may be the only one available for domains
that are difficult to characterize. For the problem at hand a simpler characterization is possible.

14The fit between s and k turned out to be rather good. We found the values a = 0.9325,
b =0.0802, ¢ = 0.9946.

5 For all possible skewness and kurtosis pairs chosen, our algorithm finds a density typically in a
small fraction of a second. This contrasts with other methods that involve at least a few seconds
for each ED evaluation. We verified that one obtains the normal density for s = 0 and k£ = 3.



o7 = ao+boy; i + ooy, (17)
5¢ = ap+ by, (18)
ke = as+ balyi_1], (19)
(st,ke) € €. (20)

In equation (14), r; represent 1001n(S;/S; 1), where S; is the closing price of some
asset at time t. Here, we assume a constant mean return, pu. The innovations, y;, are
written as a product between the conditional volatility o; and an innovation ¢. In
equation (16), we assume that ¢; follows an ED with zero mean, unit variance, skew-
ness s; and kurtosis k;. Equation (17) specifies volatility as a simple GARCH(1,1).
Equations (18) and (19) assume that skewness and kurtosis depend conditionally on
past realizations of the residual ;.

As usual we impose that ag, by, and ¢y be positive as well as that by + ¢y < 1.1°
In equation (18), a; and by are estimated freely. To guarantee positivity of kurtosis
one may assume ay and b, > 0. This constraint may, however, be overly restrictive.
If the parameter as is found to be large, then by could be negative as long as y:—;
remains small. For a given sample, this may be the case. Intuitively, a negative by
corresponds to a situation where, after a realization of a relatively large return in
absolute value, kurtosis becomes smaller than average.

In this paper, we also estimate specifications of skewness and kurtosis where

Yt—1

St = Cll—l-bl N (21)
Ot—1

ke o= ap+by |2 (22)
Ot—1

thus, involving standardized residuals.

Our specification encompasses Bollerslev’s GARCH(1,1) model with gaussian er-
rors. This is obtained by setting by = by = 0, a; = 0, and a; = 3 for all t. We
do not encompass the case of errors following the student-t or the generalized error
distribution (GED).

We also impose that (s, k;) € € in the following way: If k; is out of the authorized
domain, we impose a large penalty for the log-likelihood at time ¢. If k; is in &, then,
we compute using (13) the upper skewness boundary s*. If |s;| > s*, we impose again
a large penalty for the log-likelihood.

To ease the estimation we standardize returns by computing the mean u sepa-
rately. In a preliminary step, we also divide 7, by its standard deviation.'”

3.2 Estimation

The estimation of the parameters follows various steps. In a first step, we estimate the
unconditional mean p using as estimate ji = 1/T 3°/_, r;. This yields the innovations,

16T east stringent constraints could also be used.

1"In other words, we estimate the model for a series of returns with mean 0 and unit standard
deviation. It may not suffice to standardize returns with standard deviation because of extreme
values. For series where extremely large returns are present, it may be necessary to choose a
particularly large domain D and a standardization by a number larger than the standard deviation.

10



defined as y; = r; — 1. It is with these innovations that we estimate the GARCH
model with time-varying skewness and kurtosis.

The estimation of the remaining parameters is performed by maximizing the em-
pirical likelihood. To perform a maximization it is necessary to have an optimization
routine and an objective function. We now discuss the algorithm yielding the objec-
tive function, then we discuss the maximization algorithm used. The difficulty that
we have is that we should ideally be able to impose restrictions on the parameters so
that all the s; and k; are always in £. That would mean imposing several thousand
inequality constraints. Not having access to such code, we truncate skewness and
kurtosis to the domain while imposing penalties.

The objective function will involve a parameter vector, say 8 = (ag, bo, co, a1, b1, as,
by), and the innovations y;, t = 1,---,T. At each call to the procedure that computes
the objective function, the parameter vector and the innovations have to be supplied.
Within the procedure we use the following algorithm:

Algorithm 2:

1. This is an initialization step. We define p = 10000, some large number that
will be used as a penalty. We define a lower and an upper boundary for kurtosis,
that is k;, = 1 and k, = 16 respectively. We also set the limits of the domain
D sufficiently large to guarantee that it contains y;/o; for all t. We initialize the
dynamics of volatility using o2 = 1/T 3°/_, 2. To define the domain over which the
EDs exist we set a = 0.9325, b = 0.0802, ¢ = 0.9946, and e = 0.001.

2. We set t = 2 and initialize a vector [ with T — 1 zeros that will contain the
log-likelihoods.

3. Here we compute 07 = ag + boy?_; + o071, 8¢ = a1 + b1y 1, ky = ag + ba|y 1],
&t =Yt / Ot.

4. If ky > k, we compute 7y, = (k; — k) - p and truncate the kurtosis by setting
ki = k,. Similarly, if k; < k; we compute 7, = (k; — k¢) - p and set k; = k.

5. Now we compute the limit of skewness beyond which EDs no longer exist. That
is s*(ky) = {—b + \/62 —4da(c— k:t)} /(2a) — e. We introduce the e to be certain that
we are in the interior of the authorized domain.

6. Now we truncate skewness in case of exceedance. If s; > s* then we set
ws=(s; — s*)- p and s; = s*. If s; < —s* then we set ms=(—s" — s;)- p and s; = —s*.

7. Given s; and k; we construct the ED using algorithm 1.

8. Now we evaluate the ED, say d;, at the point ¢; and compute the log-likelihood
for period t, l;=In(d;)-In(o;). The term In(o;) comes from the Jacobian of the trans-
form from e; into y;/0;. When a boundary on skewness or kurtosis is binding then
s or m get added to the likelihood, [;.

9. Set t =t + 1. Continue with step 3 until ¢t > T

After each run through the sample, the procedure exports the vector of log-
likelihoods I; that will be used by the optimization routine. Many optimization
routines exist. We used the Broyden, Fletcher, Goldfarb, and Shannon (BFGS)
algorithm (see Nocedal and Wright, 1999).

11



3.3 Properties of the estimates

We will estimate equation (14) to (20), or alternatively the same model but with (18)
and (19) replaced by (21) and (22). Given that we assume for the errors a certain semi-
nonparametric representation it follows that our estimation becomes one of empirical
maximum likelihood. This raises the issue of the type of standard errors to use.'®

We note as Lg(@; y) the quasi likelihood obtained by using the entropy density
for the residuals. We let y = (y1,- -+, yr) the vector of innovations and 6 the vector
of all parameters. The quasi-maximum likelihood (QML) estimate 6 is obtained as
solution to R

B
6 € arg max [ln Lo (0; y)} :

The limit distribution is given by
VT (0 — 00) = N(0,h(6y) "Sh(6o) ) (23)

where 6 is the true value of 6, and where = indicates convergence in distribution.
The matrices h(fy) respectively ¥ may be estimated using

L PLE(B;y)
0000’

. [aLE (6:y)

h(6)

OLE(0;y)
oo’

-1y

|

If for given parameters the entropy density correctly specifies the true density of the
¢; then, White (1994) has shown that ¥ = —h(6y) and the maximum likelihood has
the familiar asymptotic normality
-1
90‘| )) '

Even though we believe that the modeling of innovations with a more general density
allowing for time varying moments is a step towards the correct description of inno-
vations, given the complexity of financial data, it is wise to assume that there is still
mis-specification in our model. For this reason, we recommend the use of the robust
formulas in (23). In the empirical work we will only this type of standard errors.

9?1n Lg 0;y)
9006’

VT(0 —0) = N (o, plim,._,__ (—% [

4 Empirical results

4.1 The data used

Out of Datastream we extracted daily closing prices for the S&P 500 Composite In-
dex, the FT 100 Share Index, and the Nikkei 225 Stock Index. Using closing prices,
sampled for each Tuesday (or the day closest to it), we constructed weekly returns.

18 The following discussion is inspired by Mittelhammer, Judge, and Miller, (2000), p. 248-249.
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The sample covers the period from August 27, 1971 through Mai 31, 2000. Our
database, therefore, consists of 1500 observations. Table 1 provides sample statis-
tics where all moments are computed in the GMM setting of Richardson and Smith
(1993), thus, controlling for heteroskedasticity. All the series under consideration
are negatively skewed and fat-tailed. Furthermore, the Engle statistic reveals the
presence of conditional heteroskedasticity in the data.

4.2 Preliminary Estimation

In order to get an idea of the unconditional behavior of the model, we start with
the estimation of traditional models assuming for the residuals normality, a student-
t and a generalized error distribution (GED). This means that we consider equa-
tions (14) to (17) where we replace the entropy density either with a normal density,
(2m)~1/2 exp(—0.52%)), a student-t with v degrees of freedom, I'((v + 1)/2)/T'(v/2)
(vm)~Y2(1 4 2% /v)»+1/2 or the GED with parameter 1. The density of the GED is
given by (nexp[—0.5z/A|"])/ (A2{D/DD(1/n)) where A = {27*/"0(1/n) /T (3/n)}'/2.

The estimates are reported in Table 2. We obtain for the parameters typical
values. The parameter by oscillates around 0.1 and ¢y around 0.88 suggesting that
there is a fair amount of persistence in volatility. When we inspect the parameters
for given data but various models we notice that the estimates remain very similar.
Next, we may inspect the standard errors. We find that the robust standard errors
are similar across the various models.

It is further possible to compare the gaussian model with the student-t and GED
since the student-t encompasses the normal case for v = oo and the GED does the
same for n = 2. To perform the test we may either directly use the Wald t-test
associated with the parameters v and 7 or the likelihood ratio test of the gaussian
restriction. For both types of tests we notice that we always soundly reject the
gaussian restriction. When we consider the SP 500 we find that the parameter v is
relatively large taking the value 11.57 and the n the value 1.66. This suggests that
this series has innovations that are close to the gaussian case.

Now we turn to a model where errors follow an unconditional ED obtained by
setting by = by = 0, i.e. skewness and kurtosis are constant. For this estimation,
we use as starting values for skewness and kurtosis the estimates reported in Table 1
and as starting values of the volatility equation, (17), the ones of the GARCH(1,1)
model. Convergence was achieved after a few seconds. The results are presented in
Table 3. We notice values for the estimates of the volatility equation (17) that are
close to the values reported in Table 2.

Turning to skewness and kurtosis, for the SP 500 we obtained in Table 1 the values
-0.32 and 3.22. Now we obtain -0.28 and 3.87, thus, the parameters are relatively
close. However, for the F'T 100 this is not the case. Skewness took the value -0.38 in
Table 1 but now takes the value -0.78. Since it is known that conditional volatility
creates fat-tails, this suggests that the filtering by the conditional volatility amplifies
the tail behavior, questioning the specification of GARCH models for certain series.

Even though the ED does not encompass the student-t nor the GED one may
ask which model should we select. Several selection criteria may be used such as the
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Akaike or Schwarz criterion. Since the number of parameters is equal in all these
models, the selection among the student-t, the GED or the ED boils down to the
choice of the model with the largest likelihood. Both for the SP 500 and the FT 100
we find that the entropy performs best. For the Nikkei we find that the student-t has
a higher likelihood than the ED which in turn performs better than the GED. This
observation suggests that there are extreme realizations in the Nikkei that the ED
has difficulties to capture.

In Figure 4 we display the shape of the various distributions of ¢; for the FT
100. The choice between a normal and student-t is not an obvious one since their
shape is very close. The GED, on the other hand, differs from the normal and the
student-t. Its peak is much more pronounced. One of the disadvantages of these
distributions is that they are symmetric and, therefore, they do not allow for an
asymmetry. Inspection of the ED reveals that there is a strong asymmetry in the
data. This skewness is due to large negative realizations.

4.3 Estimation of the general model

A first remark is that in optimization problems of this kind, the choice of initial values
is quite important. Even though the code has been written in such a manner that
the parameters end up in the authorized domain, the estimation is sensibly faster if
one starts with interior parameter, i.e. all the constraints are satisfied. We will use
in our estimations the parameter estimates obtained from the unconditional entropy
density estimation.

The left part of Table 4 correspond to the specification I, that is skewness and kur-
tosis are described by equations (18) and (19). The right part of the table correspond
to the specification involving equations (21) and (22).

A first comparison between the volatility parameters of Table 4 with those of
Table 3 reveals that these parameters are essentially unaffected by introducing time-
varying skewness and kurtosis. For instance, the parameter by of the FT 100 took the
value 0.0219 when skewness and kurtosis were held constant, whereas now it becomes
0.0167.

Inspection of the constant in the skewness equation with s of Table 3 indicates
that for certain specifications this parameter is rather unstable. For the FT 100 the
constant markedly decreases in absolute value from -0.79 to -0.31. Interestingly, the
parameter a; is now very close to the unconditional skewness estimated in Table 1.

Using the likelihoods of the various models it is possible to test the restriction
by = by. We notice that, for the Nikkei, specification I appears as an improvement
over the model with constant skewness and kurtosis, and similarly specification II for
the SP 500. At first glance, for the other estimations the model with time varying
skewness and kurtosis does not bring much improvement from a statistical point of
view. More careful inspection of the t-statistics of the parameters shows that the
lagged parameter b; in the skewness dynamic of the FT 100 is statistically different
from 0. Also from an economic point of view, inspection of the magnitude of the
point estimates of b; and b, shows that these coefficients are relatively large. One
possible interpretation of these results is that skewness and kurtosis measure extreme
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realizations that occur only seldomly. Because of this rare occurrence statistical tests
will have little power.

To sum up: our model of conditional skewness and kurtosis reveals some condi-
tional behavior at a weekly frequency, however, this dynamic is rather difficult to
interpret.

5 Conclusion

In this paper, we have first shown how entropy densities can be estimated in an effi-
cient manner. We characterize the skewness and kurtosis domain over which entropy
densities will be well defined while keeping the mean equal to zero and the variance
equal to one. In a numerical application, involving series of weekly stock returns, we
show that the entropy density is of value in traditional GARCH models, i.e. where
skewness and kurtosis is not time variant. Turning to the model allowing for time
varying parameters we show that the estimation of a model involving a time-varying
skewness and kurtosis is possible.

A further contribution is that we show how skewness and kurtosis may be rendered
time varying using entropy densities. We find that from a statistical point of view
there is little evidence that skewness and kurtosis are dependent on past returns.
One possible reason for this finding is that these moments are driven by extreme
realizations that occur only infrequently. Because of this rare occurrence statistical
test may lack power.
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Captions

Table 1: This table represents moments computed with GMM and a correction
for heteroskedasticity. The numbers in parenthesis, i.e. s.e., are the standard errors
of the statistics. Normality corresponds to the Jarque-Bera test of normality. This
statistics is obtained as the sum of the squared standardized skewness and the squared
standardized excess-kurtosis. Engle is the Lagrange-multiplier statistic 7' R? of joint
significance of the regressors in an OLS regression of squared centered returns on
their lags. There are 1500 weekly observations in the sample.

Table 2: This table displays the results of the estimation of traditional models.
We describe the innovations y; = 7, — 1/T Y.[_, ; by assuming that y; = o¢; where
oy = ag + boy? | + coo? ; and ¢ is either modeled with the standard normal, the
student-t, or the generalized error distribution (GED).

Table 3: This table represents the parameters of the GARCH regressions where
innovations are assumed to be distributed as an entropy density. Here skewness s and
kurtosis k are supposed to be constants. The superscript a (b) indicates significance
at the 5% (10%) level.

Table 4: In this table, we estimate a GARCH model on the full sample allowing
for time-varying skewness and kurtosis. In specification I, skewness and kurtosis are
modeled as s; = a1 + byy, 1 and ky = ag + bo|y, 1. In specification II, the model is
St = ay + by 1/or 1 and ky = ag + bo|yy 1/0¢ 1| The label LRT corresponds to a
likelihood ratio test statistics of the restricted model where b; = bs.

Figure 1: Here we represent the frontier delimiting the skewness and kurtosis
domain where entropy densities exist. This graph represents only the upper half of
the authorized domain. The various letters A to F correspond to points for which we
represent the entropy density in later figures.

Figure 2: Entropy densities for the points A, B, and C.

Figure 3: Entropy densities for the points D, E, and F.

Figure 4: Various unconditional densities obtained in a GARCH estimation.
This graph is for the FT100.
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Table 1. Descriptive Statistics

SP 500 FT 100 NIKKEI
Mean 0.1774 0.1844  0.1267
(s.e.) 0.056*  0.069*  0.060°
Var 2.1479  2.678 2.3169
(s.e.) 0.063*  0.113*  0.072¢
Skew -0.3243 -0.3874  -0.3557
(s.e.) 0.238 0.591 0.217
Kurt 3.2179  8.7147  3.7658
(s.e.) 0.965*  3.987*  0.647°
Normality  12.08 5.64 36.50
p-value 0.00 0.06 0.00
Engle 79.05 48.81 52.95
p-value 0.00 0.00 0.00




Table 2. GARCH estimates with traditional densities

Gaussian model Student-t GED

SP500 FT 100 NIKKEI SP 500 FT 100 NIKKEI SP 500 FT 100 NIKKEI
ap  0.0292 0.0264 0.0143 0.0223 0.0224 0.0124 0.0283 0.0282 0.0159

0.0147*  0.0100*  0.0091 0.0115°  0.0072¢  0.0060® 0.0143¢  0.0094¢  0.0082°
bo 0.1078 0.0937 0.1148 0.0826 0.0651 0.0921 0.1045 0.0883 0.1272

0.0242%  0.0191* 0.0345* 0.0196* 0.0136* 0.0216* 0.0239*  0.0177*  0.0306“
co 0.8667 0.8836 0.8807 0.8757 0.8814 0.8553 0.8704 0.8835 0.8670

0.0323*  0.0203* 0.0387* 0.0324* 0.0210* 0.0335*  0.0324*  0.0208*  0.0330“
v — — — 11.5751  8.2593 6.0466 — — —

2.8544%  2.0155%  0.9527“
n  — — — — — — 1.6635 1.4506 1.3292
0.0925%  0.1420*  0.0826“

Lik -2014.76 -1990.22 -1958.18 -2002.75 -1939.58 -1904.62 -2007.62 -1957.01 -1914.56
LRT — — — 24.03 101.27 107.13 14.29 66.41 87.25




Table 3. GARCH estimates with entropy density and constant skewness and kurtosis

SP 500 FT 100 NIKKEI

ag 0.0233 0.0329 0.0221
0.0117¢  0.0109*  0.0099“

bo 0.0967 0.0965 0.1384
0.0216*  0.0219*  0.0324°

Co 0.8823 0.8710 0.8435
0.0283%  0.0252*  0.0365°

s -0.2839  -0.7907  -0.4453
0.1041*  0.5405  0.1516°

k 3.8767  9.1575 5.2828
0.2469*  5.2757  0.7179°

Lik -2001.31 -1932.80 -1910.01
LRT  26.91 114.84 96.34




Table 4. GARCH estimates with entropy density and time-varying skewness and kur-
tosis

Specification I Specification II
SP 500 FT 100 NIKKEI SP 500 FT 100 NIKKEI
ayp 0.0203 0.0308 0.0253 0.0203 0.0314 0.0230
0.0120°  0.0093*  0.0102° 0.0120°  0.0096*  0.0099%
bo 0.0987  0.0823 0.1597 0.0959 0.0834 0.1396
0.0234*  0.0167*  0.0577° 0.0217¢  0.0175*  0.0322°
Co 0.8837  0.8777 0.8045 0.8862 0.8838 0.8467
0.0296*  0.0209*  0.0824° 0.0287*  0.0226*  0.0321°
ap  -0.2832 -0.3175  -0.3298 -0.3131  -0.3386  -0.6859
0.0895%  0.2148  0.1304° 0.0923*  0.2669  0.3037°
by 0.1202 0.2337  -0.0892 0.1119 0.2495  -0.1967
0.0907  0.0817*  0.1084 0.0812  0.0867*  0.1907
as 4.0575  4.3433 4.8576 4.2132  4.1606 5.2450
0.3168*  1.7948  0.5115° 0.3476*  4.3792 1.4504
by -0.0310  0.6884 0.0125 -0.1664  1.4494 1.4055
0.2124  0.5354 0.1534 0.2188 3.6701 1.8705

Lik  -1995.16 -1931.74 -1901.27 -1994.68 -1932.05 -1909.67
LRT  12.30 2.11 17.50 13.26 1.50 0.69
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