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Abstract

In this paper, we estimate two small, forward-looking, macroeconomic mod-
els for the US and Germany and we compare the implied optimal monetary
policy rules. Both models have a standard structure: an I-S curve, a Phillips
curve, a short term interest-rate rule and a long term interest rate determined by
the Expectations Hypothesis. They are intended to fit the data while allowing
for some forward-looking behavior. They are estimated from 1968 to 1998, us-
ing the full-information maximum-likelihood procedure, so that forward-looking
expectations are fully model-consistent. In order to evaluate monetary policy,
we compute optimal policy frontiers and we perform some simulations of the
model. German optimal monetary policy is found to require a more persistent
and slightly stronger response to inflation and output than the US optimal policy.

Résumé

Nous estimons dans ce papier deux petits modéles macroéconomiques, a an-
ticipations forward-looking, pour les Ktats-Unis et I’Allemagne, et nous com-
parons les régles de politique monétaire optimales induites par ces modeles. Les
modeles sont constitués d’'une courbe 1-S; d’une courbe de Phillips, d’une régle
de taux d’intérét court, et d’'un taux long déterminé par la théorie des antic-
ipations. Ils sont estimés sur la période 1968-98, & l'aide d’une procédure du
maximum de vraisemblance & information compléte, de telle sorte que les an-
ticipations forward-looking sont cohérentes avec le modéle. De facon & évaluer
la politique monétaire, nous construisons des frontiéres de politique optimale
et nous réalisons des simulations du modéle. Nous trouvons que la politique
monétaire optimale allemande nécessite une réponse plus persistante et légére-
ment plus forte a 'inflation et & I’écart de production que la politique optimale
américaine.
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JEL classification: K52, E58, F41.
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1 Introduction

In this paper, we estimate two small, forward-looking, macroeconomic models for
the US and Germany, and we compare the associated optimal monetary policy rules.
The models have the following common structure: inflation and output dynamics are
described using a standard Phillips curve and an I-S curve respectively; the reaction
function is a Taylor-type rule for the short-term interest rate; the long-term interest
rate is consistent with the rational expectations hypothesis of the term structure of
interest rate.

An abundant literature has investigated monetary policy and other macroeco-
nomic topics using such models. The I-S curve / Phillips curve framework encom-
passes a wide range of macroeconomic models, especially since Kerr and King (1995)
and McCallum and Nelson (1996) have included forward-looking features in the I-
S curve. Such a theoretical framework can be associated with different empirical
modelling strategies.

A first approach is to use fully calibrated models derived from optimization behav-
iors (King and Wolman, 1996, Rotemberg and Woodford, 1998, Yun, 1996). Haldane
and Batini (1998), and Svensson (1998), while putting less emphasis on micro foun-
dations, have also used a calibrated model to analyze monetary policy issues.

A contrasting strand of research has relied on VAR models to analyze monetary
policy. The typical VAR model in this respect involves the inflation rate, the short-
term interest rate and an output indicator (Sims, 1992, Gerlach and Smets, 1995,
Bagliano and Favero, 1998). Interpreting impulse responses to a monetary policy
shock involves implicit reference to the I-S curve/Phillips curve/reaction function
structure. VAR models are an interesting benchmark, since they provide some guide-
lines as regards transmission lags of monetary policy and an agnostic encompassing
specification against which structural models can be tested. However, they are less
suited for studying monetary policy rules (see McCallum, 1999).

In order to evaluate monetary policy rules, a number of studies have estimated
backward-looking versions of the I-S curve and Phillips curve model, which can be
seen as constrained VARs (Rudebusch and Svensson, 1998, Fair and Howrey, 1996).
Using European data, this approach has been adopted in particular by Taylor (1999a)
and Artus, Penot, and Pollin (1999).

The aim of the present paper is to estimate such a small macroeconomic model,
in order to reach a reasonable fit of the data, while including some forward-looking
elements. Thus, our approach is related to the one developed by Fuhrer and Moore
(1995a,b) and Fuhrer (1997a). Concerning the micro-foundations of the model, our
strong prior is that adjustment is more sluggish on goods and labor markets than on
financial assets markets. We allow for adjustment lags and backward-looking features
in output and price behaviors. On the contrary, we regard long-term interest rates
as more readily represented by forward-looking and rational expectations conditions.
Thus, we use the expectations hypothesis of the term structure to model long rates.

Monetary policy is represented by a reaction function. This approach has proved
to be an empirically successful characterization of central bank’s behavior (Clarida
and Gertler, 1997, Clarida, Gali, and Gertler, 1998a, Judd and Rudebusch, 1998).
The short rate is assumed to depend on the inflation rate and an output-gap mea-
sure. An alternative approach is the optimal monetary policy approach, investigated
thoroughly by Svensson (1997, 1998). However, a large number of studies (Taylor,
1999a, Williams, 1999, among others) have shown that a simple interest-rate rule is



a fairly good approximation of an optimal rule.

The outline of the paper is as follows. Section 2 provides a description of the
theoretical framework. Section 3 presents the full-information maximum-likelihood
estimates of our structural model for the US and Germany over the 1968-98 period
(the estimation method is described in Appendix 1.) To briefly summarize our results,
we obtain for Germany an estimated model in which the economy is less reactive than
the US economy. Over the recent period, the Bundesbank’s monetary policy appears
to have been more reactive to changes in the output gap than the Fed’s, but also more
smoothed. Weight on inflation in the reaction function are similar. In Section 4, we
compute the optimal monetary frontiers for the US and Germany. We find that the
Bundesbank’s optimal response is more smoothed than the Fed’s, which is consistent
with the estimated rules. We find that for both countries the optimal monetary policy
implies larger parameters than the estimated policy. In order to investigate the gap
between estimated and optimal policy rules, we study the robustness of the computed
German optimal policy frontier to parameter uncertainty. Section 5 presents our main
conclusions.

2 The structural model

Investigating monetary policy requires to design a structural model including the
instrument of policy and its targets. This model therefore includes a Phillips curve
that relates inflation to the output gap, an I-S curve in which output gap is related
to the long real rate, and a monetary-policy reaction function in which the short
nominal rate depends on inflation and output gap.

Our model implicitly assumes that the inflation rate, the short nominal rate and
the output gap are stationary variables. The overall structure of the model implies
that the order of integration of inflation and nominal interest rate is determined by
monetary policy. We assume here that the inflation target is constant (with a possible
break in 1979) rather than a random walk. Moreover, assuming stationarity of the
inflation rate, the short nominal rate and the output gap, we are able to compute
steady-state values for the model variables. Furthermore, stability of the model
crucially hinges on the degree of responsiveness of monetary policy. If the monetary
authority has a sufficient response to deviations of inflation from its target, inflation
and short nominal rate are stationary.

Our method for solving and estimating the model is presented in Appendix 1.
It relies on putting the model under an autoregressive form for the predetermined
variables. When some eigenvalues of the associated matrix are greater than 1, the
algorithm does not converge, so that the method rules out non-stationary solutions.

2.1 The Phillips curve

Prices are set according to an augmented Phillips curve, which can be interpreted
as an aggregate supply equation. Inflation is related to its own lagged value and to
lagged output gap, y;:

T+l = QpTy + Qylyp + 0 + €441 (1)

where m; = 4 (pt — Pt—l) is the annualized quarter-on-quarter inflation rate at time
t, with p; the domestic (log) price index. The innovation e;11 is a zero-mean i.i.d



cost-push supply shock. The parameter «q is a constant term. The output gap y; is
defined as
e =yt =yl

where y¢ is the (log) aggregate demand and y? the (log) potential output. The
above Phillips curve can be seen as a reduced form of many macroeconomic models.
However, since it imposes a backward-looking behavior, it is somewhat restrictive.
In the sticky-price models of Calvo (1983) and Rotemberg (1982), the Phillips curve
is derived from an optimizing behavior, and is entirely forward looking. Fuhrer and
Moore (1995a), building on Taylor (1979), put forward a more balanced model, which
is able to replicate the observed inflation persistence. Their model is a version of the
Taylor’s staggered contracts model, in which employees are assumed to care about
relative real wages rather than relative nominal wages. Fuhrer (1997b) shows however
that empirical evidence in favor of the forward-looking component of the Phillips
curve is rather 'unimportant’ on US data. He finds that the part of the backward-
looking component is systematically larger than 75 percent, and the null hypothesis
of no forward-looking component is never rejected. We also tried to introduce in our
model a forward-looking component to inflation. It failed to be significant. We then
adopt a purely backward-looking inflation equation. This is consistent with the idea
that good and labor markets have a more adaptive behavior than financial assets
markets.

We constrain the sum of autoregressive parameters to equal one, in order to satisfy
the 'natural rate’” hypothesis. Moreover, we estimate a more general backward-looking
specification of the form

K
M) = § Qg Ti—f + Oyl + Q0 + E¢41
k=0
with ar = Z,{;O arr = 1. Imposing the sum of autoregressive parameter (o, =

Z?:O ark) to be equal to one does not contradict the stationarity hypothesis of the
inflation rate. Stationarity has to be evaluated within the whole model. So, as long
as the central bank overreacts to a shock on inflation, a negative effect of the long
term real rate on the output gap will imply a stationary inflation through the effect
of output gap on inflation, even though «,; = 1.! Since we impose a; = 1, the
constant term ap has to be set equal to 0. Indeed the long-run solution of eq. (1) is
gl — LR 4 anyR + . Since the output gap is null in the long run, we should
have ag = 0.

2.2 The I-S curve

The aggregate demand is described with an I-S curve, that relates the output gap to
its own lagged values and to expected long real rate, p, . Ji:

Yir1 = Bor¥t + Bya¥i—1 — Bppitaye + Bo + Misa (2)

where 7,,q 1s a zero-mean demand shock. Throughout the paper, z;,1/; denotes
the conditional expectation on date ¢ of variable x;11. Forward-looking expectations

'Estimating this model freely yields Y5 | anx = 0.952 (with t-stat = 1.114 for (a; — 1)) for
US data and 0.761 (with t-stat = 3.170) for German data. Since we are interested in the long-run
inflation / output-gap volatility trade-off, we constraint ax = 1 to avoid a long-run inflation / output
gap level trade-off.



terms are model-consistent. The long real rate, p;, is the yield to maturity on a
hypothetical long-term real bond. The expectations hypothesis of the term structure
implies that the expected holding-period return on a long-term real bond equals the
short real rate, ry:

pr— D (Pt+1/t - Pt) = Tt (3)

The short real rate is defined as r; = 4 — m;_1/;, where the short nominal rate, i,
is the monetary policy instrument. D is a constant approximation to Macaulay’s
duration.? Solving this equation recursively forward for p,, we express the long real
rate as an exponentially weighted moving average of the expected short real rates

1 & D \7
- S () E . 4
Pr 1+/)TX_:0<1+/)> tisrft (4)

A time-varying risk premium may be introduced in this equation in order to take
account of deviations from the expectations hypothesis. We do not consider this case
in the following. Eq. (3) can also be expressed in the following way®

1+D 1 1+D I
e L N AU (5)

that is useful to write the model under state-space form.

The autoregressive term in eq. (2) is designed to capture persistence in the output
gap and can be motivated by rule-of-thumb consumers or by habit formation (Fuhrer,
1998). The interest-rate elasticity in the I-S curve is crucial for the global dynamics of
the model, since monetary policy affects inflation through the impact of the interest
rate on the output gap. Note that the inclusion of the long real rate makes the I-
S curve a forward-looking one. Future price developments do affect current output
through their impact on expected future short term real rates. Since monetary policy
and financial asset markets are themselves forward looking, this raises non-trivial
estimation issues and cross-equation restrictions.

The long-run solution of eq. (2) implies that the steady-state value for the long
LR _ b
=3

real rate is constant: p

2.3 The monetary policy reaction function

Monetary policy rules have became a widely discussed topic (see Taylor, 1999b). The
analysis has developed along two lines. The first approach consists in the empirical
estimation of reaction functions (Taylor, 1993, Clarida, Gali, and Gertler, 1998a). A
second strand of research has investigated the determination of the optimal monetary
policy rule (Svensson, 1997, 1998). The optimal policy can generally be expressed as
a feedback rule, but the rule depends on the parameters of the economy and on the
parameters of the central bank’s loss function. Optimal rules depend virtually on any

*In empirical application, we assume a constant duration. The average duration over the sample
of the 10-year corporate bond is about 7 years for the US as well as for Germany. We therefore set
D =28 in the empirical estimates.

? Alternatively, eq. (3) states that the expected change in the long real rate is related to the real
term spread, as:

1 .
Apiape= 35 loe = (i +meae)]



variable of the model. In the empirical estimation, we follow the first approach and
estimate an instrument rule with a standard Taylor-rule type structure. Theoretically,
we would be able to estimate the parameters of the central bank’s loss function, but
we do not assume that the monetary rule was optimal over the sample period.

In the original formulation of the Taylor rule, monetary policy is represented with
a reaction function that relates the short nominal rate to current inflation and output
gap:

i1 =T+ 7+ L5 (m — 7) 4+ 0.5 (yr — §) + w1

where 7 and g are the central bank’s inflation and output-gap targets; 7 is the equi-
librium short real rate, assumed to be exogenous. We assume that the central bank
does not have an inflation bias, so that the target for the output gap is set to zero
(y =0).

Several extensions of this baseline specification have been proposed in the lit-
erature. Of particular interest in the context of rational expectations is the spec-
ification adopted by Clarida, Gali, and Gertler (1998a), which assume that the
central bank does not react to observed inflation but to expected inflation. They
estimate this equation on a single-equation basis using the Generalized-Method-of-
Moments (GMM) approach. In the context of our simultaneous equation model, a
more relevant approach is to use the model-consistent inflation expectation 7,1/ =
Zszo Qr Tk + Qye, Which is available at date £.

Monetary policy is modelled by a partly forward-looking reaction function. The
short nominal rate is related to its own lagged value, to expected and lagged inflation
and to lagged output gap:

i’t+1 = (1 — éz) [7Tt—1—1/t + (éﬂ— - ].)7Tt —+ éyyt} + éﬂt + 60 + Uprq. (6)

This specification includes a lag of the short rate, to capture the high degree of
persistence in the interest-rate series. Sack and Wieland (1999) review motivations
for smoothing interest rates. They mention measurement errors of macroeconomic
variables as a possible explanation. In models with forward-looking expectations,
inertial policy can also be optimal. This feature, as underlined by Levin, Wieland,
and Williams (1998) and Williams (1999), derives from the forward-looking dynamics
of interest rates. The same impact on the long real rate can be attained through a
large but short-lived change in the short rate or through a small but expected to be
persistent change in short rate. With the latter solution, the short-rate variability is
kept moderate. (See for instance Williams, 1999, Woodford, 1999, and also section 4
of the present paper.)

Inflation and output gap are lagged to account for the delay in the observation of
the data by the central bank. But we also introduce some forward-lookingness in the
behavior of the central bank (see, e.g., Artus, Penot, and Pollin, 1999). The medium-
run target is broken into two elements: the 7.1/, term implies that the central bank
has a target for the short real rate ¢y — m;14 /1, while (6 — 1)m; captures the reaction
to deviation from the long-run inflation target. Thus, m;_ 1/, + (6r — 1)w;, + byy; can
be seen as an error-correction term from the medium-run target for the nominal rate.
Ensuring stability of the model implies (6; — 1) to be positive.

*We therefore transform &, parameter into the authorized region ]a, b[ using the transform &, =
S (;Sf,a,, b) where 6, is estimated freely, and the function f (x,a,b) = a4 (b — a) maps R

into ]a,b[. Here we choose a = 0.0001 and b = 0.9999.

N —
14+exp(—z)



The long-run solution of eq. (6) for the short real rate is simply
(1—8;) i = (1 &) [Sam™ + 6,4"7] + 60

that is &1 = 5 rlR 4 1—f°b— Therefore, since i%1t = plft 4 7L the steady-state value
for the inflation rate is LR \ \
e _ P (L= 6) —do
(bx — 1) (1 = &)

and the steady-state value for the nominal rate is

br—1  (bx—1)(1—6;)

iR bz B0 bo

3 Empirical results

3.1 The data

The model is estimated for the US and Germany using quarterly data from 1968:Q1
to 1998:Q4. The data are mainly drawn from OECD databases (BSDB and MEI).
Consistently with the quarterly frequency of the model, we use the three-month
interest rate as a proxy for the central bank’s intervention rate. The output gap is
defined by the deviation of (log) real GDP from (log) potential GDP. Potential GDP
is computed using a deterministic trend with a break in trend growth rate in 1974.
The GDP deflator has been chosen as price indicator. Inflation is therefore defined
as the annualized quarterly change in the GDP implicit deflator.

We deal with German reunification in the following way. There is some evidence
that the Bundesbank has been focusing on West Germany developments in the first
years of German unification. One important reason is that, in addition to the statis-
tical break, inflation data have been distorted by several special factors such as price
freeing in East Germany, or fiscal developments at that time (Reckwerth, 1997).
Therefore, we use West Germany GDP data over the whole sample period. (West
and overall output growth are very similar posterior to reunification.) Regarding the
GDP deflator, we use West Germany data for the period up to 1994. Posterior to
1994, West Germany price data are not available and we use overall data. All data
for West Germany are drawn from the BIS database. Fig. 1 displays the dynamics
of inflation, output gap and short rate in the US as well as in Germany.

Our model has been estimated over a rather long period, in order to consistently
estimate structural parameters. However over such a long period, some structural
breaks may occur. More precisely, an abundant literature has highlighted that the pe-
riod 1979-82 corresponds to a major break for the Fed reaction function. The change
in the Fed operating procedures during this period (from targeting the Fed funds rate
to the targeting of nonborrowed reserves) induced a large increase in both the level
and the volatility of interest rates. Judd and Rudebusch (1998) estimate Fed reaction
functions over the samples 1979:Q3-1987:Q2 and 1987:Q3-1997:Q4, corresponding to
Volcker and Greenspan Fed Chairman tenures respectively. In estimating the Fed
reaction function, Clarida, Gali, and Gertler (1998b) obtain substantial differences
across periods in the sensitivity of interest rate to changes in expected inflation: dur-
ing the pre-Volcker period, the Fed used to raise its nominal rate by less than the
rise in expected inflation. By contrast, since 1979Q3, real rate has been raised in



the wake of increase in expected inflation. Last, Fuhrer (1997a) breaks the 1966-
93 sample into three subsamples corresponding to different monetary-policy regimes.
Structural breaks are assumed to occur in 1979:Q3 and 1982:QQ3. In the case of Ger-
many, dating shifts in monetary policy is less uncontroversial. Clarida, and Gertler
(1997) identify four episodes in the German monetary policy, with 1973, 1979, 1983
and 1990 as breaking dates. In particular, 1979 corresponds to a ”shift to tightening”.
Clarida, Gali, and Gertler (1998b) estimate a Bundesbank reaction function over the
period March 1979 to December 1993.

In this paper, we introduce a break in the reaction-function parameters between
1979:Q2 and 1979:QQ3 for both countries, corresponding to the assumed shift in the
monetary policy regime.” Reaction functions on each subsample are assumed to have
the same explanatory variables (as in eq. (6)), but with possibly different parameter
estimates.

3.2 FIML estimation of the two models

We turn now to the results of the FIML estimation of US and German models. Con-
sistent but inefficient estimates of the parameters are obtained individually by OLS
and used as starting values for the FIML estimation. The covariance matrix of pa-
rameters is computed as the inverse of the Hessian of the log-likelihood function.
We freely estimate the covariance matrix of innovations.® Table 1 reports param-
eter estimates and residuals summary statistics for both US and German models.
(Estimation is performed using GAUSS software.)

We begin with the US model (panel A). The estimated Phillips curve is fairly
standard. We introduced four lags in the price inflation, with the sum of autoregres-
sive terms being constrained to one. The sensitivity of inflation to movements in
the output gap is rather large (0.18) and strongly significant, as in Rudebusch and
Svensson (1998).

Regarding the I-S curve, the output gap displays the usual dynamics: the first lag
on output gap is larger than one, but the second lag is negative, such that the sum of
both parameters is lower than one (at about 0.95). The output-gap sensitivity to the
long real rate is crucial in our model, since this is the way monetary policy affects the
economy. As predicted by the theory, we obtain a negative parameter. Its magnitude
(—0.35) is similar to the one obtained in the empirical literature. This is the order
of magnitude found, for instance, by Fuhrer and Moore (1995b), and Rudebusch and
Svensson (1998).

Concerning the Fed reaction function, two equations are actually estimated. For
the 1968-79 subperiod, we find that the Fed reacts to an increase in inflation by
an increase in short nominal rate of the same magnitude, since real rate remains
unchanged. Since the monetary-policy reaction function determines the order of in-
tegration of inflation in the model, the result 6; = 1 (in fact, &, is constrained to
be slightly larger than 1) implies that long-run inflation is almost unbounded over
the first subperiod. In other words, the model is almost non-stationary for the first
subperiod, since the largest eigenvalue is very close to one. This result is in line

®We also estimated a model with a break in 1982:Q3. However, we then obtained a unit root in
the dynamics of the German short rate for the second subperiod.

®In a previous version of the paper, we assumed the covariance matrix of innovations to be
diagonal, in order to interpret the innovations as structural shocks. Parameter estimates were broadly
similar, but estimated standard errors were found to be somewhat larger.



with Clarida, Gali, and Gertler (1998b), who find that the estimated monetary pol-
icy rule for the pre-Volcker period permits greater macroeconomic instability than
does the Volcker-Greenspan rule. Therefore, they find 6, < 1, which our estimation
method rules out. In their calibrated forward-looking model, indeterminacy rather
than instability— may then arise. Indeed, following a rise in expected inflation, the
Fed will let short real rates decline and the output gap will rise. The expected rise
in inflation will then materialize self-fulfillingly. Note that since inflation is predeter-
mined in our estimated Phillips curve, such an indeterminacy cannot occur. Besides,
in the long run, a 1 percent increase in the output gap implies a 3.5 percentage point
increase in the short nominal rate. For the second subperiod, corresponding to the
post-1979 area, we find that parameters of the reaction function have significantly
changed: the short real rate increases strongly after a shock on inflation (6, = 0.43);
but an increase in the output gap has no longer effect on interest rate. The estimated
long-run value for the real rate, p“t, is 3.4 percent, whereas we obtain 3.3 percent for
the long-run inflation rate over the second subperiod. These values are consistent,
for instance, with those obtained by Fuhrer (1997a).

Some serial correlation remains in the residuals of the Phillips curve and the
monetary-policy reaction function. This result may be due to our choice to break-
down our sample into two subperiods only. Fuhrer (1997a) has highlighted that two
structural breaks may be necessary to correctly specify the Fed reaction function.
Another explanation may be the introduction of only one lagged value of interest
rate in the reaction function. This may insufficiently smooth interest rate (as pointed
out by Clarida, Gali, and Gertler, 1998a).

Results for Germany are reported in panel B of Table 1. Concerning the Phillips
curve, three lags were introduced in the inflation dynamics. The effect of output
gap on inflation is noticeably weaker in Germany (0.11) than in the US, but it is
significantly positive.

The I-S curve is estimated with two lags on output gap. German output gap has a
much stronger persistence than the US output gap, since we obtain §,; + 3, = 0.93.
The effect of interest rate on output gap (,) is negative (to —0.51) and is larger than
the US parameter.” In simulation experiment, this larger sensitivity is magnified by
the strong persistence of the German output gap.

The Bundesbank’s reaction function displays a very stable inflation parameter
over the two subperiods under study, at 6y = 0.45. This estimate is very close to
the basic Taylor-rule parameter. However, the Bundesbank’s reaction to output gap
displays very different patterns for the two subperiods. Over the 1965-79Q2 period,
the Bundesbank strongly reacts to shocks on the output gap: the 6, parameter is as
high as 1.2. Over the second subperiod, the response to an output-gap shock is much
weaker than previously, to only 0.3. Our results for the monetary-policy reaction
function are close to those found by Clarida, Gali, and Gertler (1998a), although
their results were obtained on monthly data with a different estimation method. To
summarize, over the recent period, the Bundesbank has reacted more strongly to
output gap than the Fed. The reaction to inflation is similar for both central banks.

"Note that, unlike this result, Taylor (1999a) finds that the elasticity of output gap to real interest
rate is five times smaller for Furopean countries than for the US. Differences in the data may explain
such a difference: Taylor estimates an I-S curve for an aggregate of German, France and Italy from
1971:Q1 through 1994:Q4. Moreover, his output-gap measure is computed using the Hodrick-Prescott
filter.



The steady-state value of the German real rate is very close to the US one (to 3.4
percent). Conversely, regarding long-run inflation, the German estimate is much lower
(2 percent) than the US estimate. Last, residuals of the monetary-policy reaction
function appear to be serially correlated and heteroskedastic.

4 Optimal policy frontiers

We are now interested in computing the optimal policy frontier in the class of Taylor-
rule policies with interest-rate smoothing. While this class does not include the
globally optimal rule, a large number of studies (Taylor, 1999a, Williams, 1999, among
others) have shown that this kind of simple rules is a fairly good approximation of
an optimal rule.® The optimal policy frontier is here defined as the set of efficient
combinations of unconditional variances of the inflation rate, o2, the output gap, (73,
and the interest rate, Uf, attainable by the central bank. In other studies, the optimal
policy frontier has been defined in the inflation/output-gap variance plane (see, for
instance, Fuhrer and Moore, 1995b, Fuhrer, 1997a, Ball, 1997). However introducing
interest rate in the central bank’s loss function is a convenient way to rationalize the
observed smoothing of interest rates.” In many models, when interest-rate variability
is not taken into account, optimal rules generate implausibly large fluctuations in
the interest rate (see, e.g., Artus, Penot, and Pollin, 1999). Another motivation for
including interest-rate variability in the loss function is the central bank’s concern
for financial stability.

Two approaches can be implemented to compute efficiency frontiers, while tak-
ing into account interest-rate variability. The first one is to introduce interest-rate
variability in the loss function. The optimal policy frontier is therefore computed by
solving the following optimization program

I{I:lelfl [ 02+ uy(r; + (1 — Uy — ,uy) o?

st. X, =M(@O) X, 1+, (7)
1 = 2410, Zt—1 = (Trtflvlytflv Z‘tfl)l

where ¢ = {6 —1,6,,06;} denotes the parameters in the monetary-policy reaction
function. Parameters p, and g, such that pr, p, € 0,1] and p, + foy < 1, are
the weights on inflation stabilization around the inflation target, and on output-gap
stabilization, respectively. ji, and p,, therefore reflect the policymaker’s preferences.

Another approach follows Levin, Wieland, and Williams (1998) and Williams
(1999). Optimal policy frontiers are then defined as the set of efficient combinations
of unconditional variances of the inflation rate and the output gap, subject to the
constraint that the unconditional variance of the short rate should not exceed a given
value k2. The optimization program then becomes:

I?gi? A2 4 (1 —N)o?

y
s.t. Xe=M(0) Xi—1 + vt (8)
i = 210, 221 = (=1, Yi—1, 6i—1)
(T;") < k2

¥See for instance Svensson (1998) for the analysis of more general monetary policy rules, in an
open-economy framework.

? An alternative approach is to restrict the policy rule to an equation for the first-difference of the
interest rate (e.g. Fuhrer and Moore, 1995).
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where X € [0, 1] is the weight on inflation stabilization around the inflation target.!?

In the following, we will use both approaches in turn, because each one provides
some insights. Program (8) appears to be best suited for the graphical representation
of policy frontiers. Indeed, in the inflation / output-gap variance plane, each optimal
frontier obtained for a given k corresponds actually to a contour line in the third
interest-rate variance dimension. Another advantage of the second approach is that
k? can be set equal to the interest-rate variance under the estimated policy rule. On
the other hand, the approach defined by program (7) allows to compare policy rules
in the two countries for the same preference parameters, regardless of the respective
variances of the macroeconomic shocks in the two countries.

Since we are dealing with a small, linear model, we are able to evaluate an analytic
expression for the unconditional variances of the model variables. This approach gives
more accurate results than simulation-based methods. As shown in Appendix 1, the
model can be written as

Xi1=M (9) X+ veaq

where X is the vector of all model variables, and v, is a vector of serially uncorre-
lated disturbances with mean zero and finite diagonal variance matrix 2. Then the
unconditional contemporaneous covariance matrix of X, denoted by V, is given in

vector form by
Vee(V)=[I—Me M *Vee(Q). (9)

Unconditional variances for the inflation rate, the output gap and the interest rate
are then obtained by selecting the appropriate component in Vec (V). For a given
interest-rate variability &k, we determine the associated optimal-policy frontier as fol-
lows. For each value of A varying from 0 to 1, we solve the optimization program
in eq. (8): we start with an initial guess for the policy-rule parameters 6, obtain
the reduced-form solution matrices M and €2, compute the unconditional moments
V' and the value of the objective function. We then iteratively update the parameter
vector § until an optimum of the objective function is obtained.

Note that, since we solve the forward-looking model at each step, we choose the
optimal policy rule among the stabilizing rules. (All variables must have a finite
unconditional variance.) In particular, this rules out the case of a central bank
under-reacting to the inflation rate.

In evaluating the optimal monetary policy, we only consider simple policy rules of
the form given by eq. (6). Although it is a more general rule than the standard Taylor
rule, since interest-rate smoothing is allowed, it remains a rather specific rule, because
the optimal reaction function does not depend on all state variables. Furthermore,
since we use a closed-economy framework, our model is not suited to evaluate the
role of the exchange rate (or of foreign interest rates) in monetary-policy rules. As
pointed out by Ball (1998) and Taylor (1999a), the exchange rate can be added to
the policy rule either because the central bank uses a monetary condition index,
defined as a weighted average of the interest rate and the exchange rate, or because
the exchange rate is added as a variable to the policy rule.!’ Levin, Wieland, and
Williams (1998) compare simple policy rules (based on the inflation rate, the output
gap and the interest rate as instruments) and complex policy rules (incorporating all

"Williams (1999) reports that measuring interest-rate variability by the variance of the level of
the interest rate or by the variance of the change in the interest rate gives similar optimal frontiers.

' Considering this type of monetary policy for the ECB, Taylor (1999a) finds no advantage for
such a rule as compared to the standard Taylor rule.
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available information in state variables). They conclude that complex rules slightly
reduce inflation and output-gap variances, but that such benefits can be offset by the
lower degree of transparency associated with complex rules.

4.1 Results for the US optimal monetary-policy frontier

Optimal policy rules for both the Fed and the Bundesbank are reported in Table 2.
This table reports the optimal reaction-function parameters and the unconditional
standard deviations computed for different values of the upper bound for o;: k =4.7
(close to the interest-rate unconditional standard deviation under the last subsample
estimated monetary policy), 5 and 6. Figures 2 display the associated optimal policy
frontiers.

Regarding the US optimal monetary-policy frontier, the estimated values for un-
conditional standard deviations fall in the range of previous studies by Fuhrer (1997a),
Levin, Wieland, and Williams (1998), Williams (1999), Rudebusch and Svensson
(1999). Differences between unconditional standard deviations obtained in these
various papers and our paper can be mainly explained by the sample used for the
estimation and, to some extent, by the specification of the model. As in most papers,
our estimated model tends to predict rather large values for unconditional variances.
As it appears clearly in eq. (9), unconditional variances depend on both conditional
variances and dominant roots in the system.'? More precisely, the larger the condi-
tional variances, and the larger the dominant roots, the larger are the unconditional
variances of the variables in the system. In section 3, we have seen that the model dy-
namics is quite persistent. Thus lack of precision in estimating conditional variances is
magnified in computing unconditional variances of the model variables. Furthermore,
in computing efficient frontiers, we include the estimated conditional variance of the
reaction function. We therefore consider 'monetary-policy shocks’ to be a fully fledged
source of variability. In practice however, removing the monetary-policy shock vari-
ance from the computation mainly reduces the interest-rate unconditional variance,
but does not affect significantly the inflation / output-gap variance trade-off.

The estimated inflation and output-gap variances display some usual features.
First, the Fed faces a clear inflation / output-gap variance trade-off, which would
be all the more favorable if it would allows for a higher interest-rate volatility. The
optimal frontier obtained for k& = 6 corresponds, in the optimization program (7), to a
very low weight on interest-rate smoothing (with L— iz — gy < 0.1). If we consider now
decreasing upper bounds (or increasing weights on interest-rate smoothing), the set
of attainable combinations of inflation / output-gap variance decreases. For instance,
for k = 4.7, the inflation standard deviation is bounded by 2.6 percent, whereas the
output-gap variance is bounded by 2.1 percent. This compares to minimal inflation
and output-gap standard deviations of 2.2 percent and 1.7 percent in the case k = 6.
Furthermore, it appears that, for the case k = 6, the optimal frontier implies very
large output-gap variance penalties (in fact infinite penalties) for inflation standard
deviations below 2 percent. Conversely, it implies very large inflation variance penal-
ties for output-gap standard deviations below 1.9 percent. Above these bounds, we
find rather balanced policies, with similar weights on inflation and output gap.

Fig. 2a also displays the estimated actual policy, summarized by the combination
of unconditional variances at the parameter estimates. The estimated actual policy

12 . . . . .
In a simple univariate framework, x; = ax+_1 + &+, where &; is an error term with zero mean and
a2 variance, the unconditional variance for x is (TE/ (1 — (1,2).
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is quite far from the computed frontier with no weight on interest-rate variability.
But if we include some concern on interest rate, the actual policy appears far closer
to an optimal one.

From Table 2, several results are worth noting. First, quite intuitively, when
the weight of inflation in the loss function increases, the response of interest rate to
inflation increases, while the parameter on output gap decreases. Yet, as Ball (1998),
we find that it is always optimal to put a positive weight on output gap, whatever
the central bank’s preferences. The output-gap parameter, even for large interest-rate
smoothing and large inflation preference parameters, is never smaller than 0.5.

Second, even when the weight on interest-rate smoothing is assumed to be very
low, we obtain a large smoothing parameter é;, at about 0.7 in the US and 0.8
in Germany. This is consistent with the result highlighted by Levin, Wieland, and
Williams (1998), deriving from the forward-lookingness of interest rates. Interest-rate
smoothing helps to stabilize the economy by generating expectations of persistent rise
(or decrease) in short term interest rates. This reduces the initial impact of shocks
due to the forward-lookingness of aggregate demand, embodied here in long term
interest rate.

While optimal policy rules have rather large parameters, they do imply a sensible
dynamics when integrated in the model. We illustrate this issue by performing a
simulation experiment, with a demand (I-S) shock on each model, for the estimated
as well as the optimal policy rules. We retain balanced preferences, with parameters
1= pir — pty = 0.3, pir = p, = 0.35 in program (7), so that the reaction-function
parameters are (0 — 1,6y,6;) = (0.9;0.9;0.7). To perform the simulation, we assume
that the aggregate demand is not affected contemporaneously by price shocks or
monetary-policy shocks, so that the shock on the I-S curve can be identified to a
structural demand shock. As shown in Fig. 3, the adjustment is more rapid under the
optimal rule: the output gap crosses zero on the third year of simulation. Moreover,
the inflation peak is twice lower and inflation does not overshoot the target.

4.2 Results for the German optimal monetary-policy frontier

The results obtained for the German model are similar to those obtained for the
US and we mainly emphasize the differences. Panel B of Table 2 reports the optimal
reaction-function parameters and the unconditional standard deviations computed for
different values of the upper bound for o;: k = 4.7, 5 (a value close to the interest-
rate unconditional standard deviation under the last subperiod estimated monetary
policy) and 6. Fig. 2b displays the corresponding optimal policy frontiers.

The first point to note is that the above feature concerning the level of uncondi-
tional variances is emphasized for the German optimal policy frontier. The German
unconditional variances are larger than in the US. This result is mainly due to the
large persistence in the model variables (in particular regarding the output-gap equa-
tion), rather than to large conditional error variances. If we consider first a given
level of interest-rate variability, we find that inflation and output-gap unconditional
standard deviations are systematically larger for Germany than for the US. Thus,
to obtain a given level of inflation and output-gap variability, the Bundesbank has
to accept a larger interest-rate variability than the US. We obtain such a feature
whatever the level of interest-rate unconditional variance.

Our main result is that the German optimal policy is more persistent and slightly
more aggressive in the long run than the US optimal policy. Consider the case of the
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same balanced preference set 1 — ;. — p,, = 0.3, pip = p,, = 0.35 (Table 3) for both
countries. Then, the optimal reaction functions have the following parameter vectors
0 = (6x — 1,64,6;) = (0.89;0.87;0.71) for the Fed and 6 = (0.93;0.94;0.78) for the
Bundesbank. In the German case, the optimal interest-rate smoothing parameter
6; 18 between 0.75 and 0.80 for all policy rules. This result reflects the fact that the
autoregressive parameter should be high, in order to make full use of the 'expectation
channel” mentioned above. On the other hand, the value for §; is bounded by 1 and
unconditional variances grow dramatically for large values of §;.13 The benefits of
interest-rate smoothing appear to be higher in Germany than in the US. This may
stem from the strong effect of long real rate on the output-gap equation.

The estimated actual policy appears to be rather far from optimal policy frontiers,
even from frontiers obtained with a large interest-rate smoothing (for instance, k =

47).

4.3 Estimated versus optimal policy rules

Given the gap between estimated and optimal policy rules, we cannot easily recover
the preferences of the central bank from our exercise. Yet the results provide some
indications. First, they indicate a strong degree of interest-rate stabilization. Second,
both central banks appear to be inflation targeters in the sense of Rudebusch and
Svensson (1998). Indeed with a high weight on inflation in the central bank’s loss
function, from Table 3, the reaction function parameter 6, — 1 is twice as large as 6,.
This is the case of the estimated rule of the Bundesbank. In the Fed case, no effect
of the output gap was found empirically significant.

Still, the gap to the optimal rule may have several interpretations. First, one may
note that, given the standard errors of the estimated parameters, some optimal policy
rules actually fall in the range of the estimated rules. Alternatively, the assumed
ability of committing to a rule could be questioned. Another possibility is that the
estimated reaction function and the computed efficiency frontiers fail to include some
relevant constraints in the central bank’s loss function. For instance, our reaction
function may be biased because of an omitted variable such as the exchange rate, or
a constraint on the level of nominal interest rates.

A last interpretation relies on model uncertainty. Our results indicate that the
optimal monetary policy would require larger reaction-function parameters than the
estimated one. This may indicate that central banks have underestimated the degree
of persistence of shocks over the sample period.™

4.4 The robustness of the German monetary-policy frontier

This section investigates the issue of robustness to parameter uncertainty, focusing on
the German case. Computed optimal frontiers may be sensitive to different non-policy
structural parameters, since our monetary policy evaluation is essentially model-
specific: parameters may be imprecisely estimated and some model equations may

13We recall that the class of rules we evaluate is somewhat restrictive, since it does not include
the first-difference rule studied by Fuhrer (1997a) or Williams (1999).

' Another approach to parameter uncertainty relies on defining a probability distribution over the
model parameters. In such a context, a gradual monetary policy is shown to be optimal over all
models under consideration (Sack and Wieland, 1999, and Rudebusch, 1999).
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be inappropriate.!> We therefore measure the robustness of the computed monetary-
policy frontier with respect to key model parameters. Three key parameters for the
design of monetary policy in a closed economy are the sensitivity of inflation to
movements in the output gap (ay), the interest-sensitivity of the I-S curve (3,), and
the persistence of the output-gap equation (3,; + ﬁyz).

To measure the effect of parameter uncertainty in Germany, we vary each key
parameter (o, 0 p and B + ﬁyg) in turn by 4 one standard deviation, while all
other model parameters and the error covariance matrix are left unchanged. We
then compute the corresponding optimal policy frontier. In computing this optimal
frontier, we use the optimization program (7), that includes explicitly interest-rate
smoothing into the objective function. We set 1 — p — p,, = 0.3, which yields an
interest-rate unconditional standard deviation close to 4.9 percent, the interest-rate
standard deviation obtained with the estimated monetary policy.!® Notice that we
vary 3,1 and (3,5 parameters, so that the sum (3, + (3,5 varies by + one standard
deviation (yielding 0.91 and 1.05).!7 Tables 4 to 6 and Fig. 4 to 6 display the effect
of a change in these parameters on the optimal policy frontier.

Increasing the «, parameter (from 0.11 to 0.16) moves the optimal frontier inward
toward to origin (Table 4, Fig. 4). Thus, for given weights g, and fty; unconditional
variances for the inflation rate and the output gap are lowered, by about 5 percent
and 15 percent, respectively. This is because the central bank is more aggressive in
terms of o, and 6, parameters. Raising these parameters allows to take advantage
of the larger sensitivity of inflation to movements in the output gap. The overall
result is a slight increase in the interest-rate unconditional variance. We note that an
increase in the o, parameter implies a flattening of the optimal frontier. Therefore,
lowering inflation variance has a slightly smaller cost in terms of output-gap variance.

When the 8, parameter is increased in absolute value (from —0.51 to —0.84), we
obtain a quite different pattern (Table 5, Fig. 5). As in the case of increasing a,, the
monetary policy gains a better control over the economy. But unlike the previous
case, a large interest-sensitivity of the I-S curve allows the central bank to lower the
inflation-rate and the output-gap parameters in the reaction function, while at the
same time decreasing unconditional variances for the inflation rate and the output
gap (by about 5 percent in most cases). Simultaneously, since output gap is more
reactive to movement in the long real rate, the central bank is able to decrease its
interest-rate smoothing and the unconditional variance of interest rate.

Let turn now to the case where persistence in the output gap is lowered (from 0.96
to 0.91). A strong decrease is obtained in both inflation and output-gap parameters
in the reaction function, whereas unconditional variances on the inflation rate and
the output gap remain basically unchanged (Table 6, Fig. 6). The central bank is
thus able to obtain the same result in terms of unconditional variances with a much
less aggressive monetary policy, allowing the interest-rate unconditional variance to

15 A more in-depth sensitivity analysis should also review the issue of uncertainty in the measure-
ment of the output gap.

"“We prefer to use the optimization program (7) rather than program (8), because varying a
structural parameter does not change the weight of interest rate in the central bank’s objective
function, whereas it affects the attainable interest-rate unconditional variances. Therefore, after a
change in a structural parameter, the central bank adjusts reaction-function parameters to attain a
new combination of unconditional variances of the inflation rate, the output gap and the short rate.

""We recall that values larger than 1 are admissible for the autoregressive sum ensuring station-
narity of the output gap.
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decrease significantly. We therefore obtain a reaction function that is significantly
closer to the empirical estimate. For large values of the weight on inflation in the loss
function, the output-gap parameter falls below the empirical estimate of 0.27. So we
may argue that the estimated reaction function is consistent with a lower degree of
persistence in the demand shock.

5 Conclusion

This paper considers a structural model with model-consistent expectations designed
to study US and German monetary policies. The model has a standard I-S curve
/ Phillips curve / interest-rate rule structure. We estimate this model on quarterly
data from 1968 through 1998. Our results for the US economy are rather close to
previous work (in particular, Fuhrer and Moore, 1995b, for the I-S curve, Rudebusch
and Svensson, 1998, for the Phillips curve, and Clarida, Gali, and Gertler, 1998a,
for the reaction function). Compared with the estimated US model, the German
Phillips curve is found to be less sensitive to the output gap. Conversely, the output
gap reacts to the long real rate more strongly. Over the recent period, the German
reaction function put more emphasize on output-gap movements, but we also obtain
a strong interest-rate smoothing.

Then, we compute optimal monetary rules and frontiers for both countries. We
find that, consistently with the estimated reaction functions, optimal monetary policy
implies a strong degree of interest-rate smoothing. This feature derives from the
forward-looking dynamics of long real rates. As highlighted by Levin, Wieland, and
Williams (1998) and Williams (1999), a small but expected to be persistent change
in short rate allows to stabilize the economy while keeping the short-rate variability
moderate. We find that the optimal degree of interest-rate smoothing is higher for
the German economy than for the US. This rationalizes the higher degree of interest
rate smoothing found in the estimated German reaction function.

Another main result is that optimal monetary policy implies a strong reaction
to both the inflation rate and the output gap. In particular, optimal parameters on
inflation and the output gap are larger than those implied by the Taylor rule. This
result, obtained by Ball (1998) using a calibrated model, is confirmed for Germany
as well as for the US. Thus, even with a low preference for output stabilization, the
output gap should always matter in the reaction function. This finding supports
the view that, in spite of the positive weight of the output gap in its estimated
reaction function, the Bundesbank has been targeting inflation. Nevertheless, for
both countries, estimated parameters for the inflation and output gap are lower than
optimal parameters.

Several avenues can be explored to rationalize this result. First, uncertainty on
the true model and on parameters of the economy may be an argument in favor of
a more gradual response (Sack and Wieland, 1999). Performing sensitivity analysis
demonstrates that the estimated policy rule for Germany is consistent with a lower
than estimated persistence in the output gap. Second, our results may be due to the
rather simple specification of the model, or to the restrictive form of the central bank’s
loss function. Last, our evaluation relies on the monetary authority committing to
one simple rule. This might not be verified over the whole sample period.
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6 Appendix: Estimating the model

The Appendix derives the state-space form of the model as well as the solution
method, closely following Svensson (1998).

6.1 State-space form

Summarizing the structural model, the I-S curve, the Phillips curve and the monetary
policy rule can be expressed as:

K

Ti41 = Z QrgTi—k + gyl + €441 (10)
k=0

Yir1 = By + By — Bppraas + Bo + i (11)

i1 = (1—06;) [7Tt+1/t + (0 — 1) m + 5yyt} + b1 + 60 + Ugr1- (12)

The dynamic of expected long real rate is as follows:

1+ D 1 . .
Prap="pH PiTp (i — Toga 1) - (13)

To set up the model in a state-space form, three types of variables have to be
distinguished: the (nq,1) vector of predetermined variables X;, the (ng, 1) vector
of forward-looking variables x; and the (ng, 1) vector of measurement variables Y.
This last vector is introduced in order to allow for some unobserved variables (some
time-varying risk premia, for instance) and some additional lags. In the context of
the present model, we do not introduce such unobserved variables, but we incorpo-
rate extra lags. Therefore, measurement variables Y; are a subset of predetermined
variables X;. We have ny = 7, no = 1 and n3 = 3, and the three vectors are the
following:

X i)
t 7rt77rt—177rt—27ﬂ-t—3wytwyt—172t)

(
Ty = (Pt)/
(

S\
Yi = (mnyir) .

We denote by Z; = (X|, x})’, of dimension (n, 1), where n = n +na, the vector of
both predetermined variables and forward-looking variables. Innovations associated
to the predetermined variables are v, = (&,0,0, 0,7, O,Ut)/ with covariance matrix
denoted €. We define ¥ the covariance matrix of the true innovations o, = (g4, 1, 1)’

We can then collect equations (10) to (13) in the following state-space model:

(50 = s ()
Tii1/t 0

Y = CXi+es

where A is the (n, n)-matrix of the model parameters and C'is a (n3, n1) matrix with
known elements. The error term e; is introduced to achieve a general state-space
formulation.

The definition of matrices A and C' is straightforward from equations (10)-(13).
To keep formulas more compact we report the row vectors of matrix A, with A,
denoting the ith row of matrix A. We use the notation e; for the (n, 1) vector whose
1th element is unity and whose other elements are 0.
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The dynamics of the Z; variables can then be summarized in the following way:

/ / / / /
Qr1€7 + Qr2€y + Qpz€g + Qpa€y + Qyes

€
¢
A= s
€5
(1 — 61) {AL + (67r — 1) 6/1 + 6y€’5] + 516l7

!/ /
68 - 67 + ./4]_

6.2 Autoregressive form of the model

To estimate the model, we begin with writing forward-looking variables z; as a func-
tion of predetermined variables:

Tl = HXH_]_ (14)

where H has to be defined. We follow Svensson’s (1998) iterative solution, starting
from an arbitrary initial condition for H;.1. The state-space model can then be

written as:
(XH1>:A&+(”“) (15)
L1/t 0

where A is partitioned conformably with X; and

Apn Arg
A= .
< A1 Ao
The first operation is to eliminate forward-looking variables of Z; form the right-hand
side of the system, so that current variables only depend on X; variables. This is

achieved by substracting H;y1 times the expectation at date ¢ of the upward block
of (15) from the inferior block of Z,

Tp1ye — M1 Xy = (o1 — M1 A1n) Xy + (A2g — Hee1 Ara) 24
Since the left-hand side part is zero according to eq. (14), it follows that:
2y = (Agg — Hyo1 A1) (Aag — HpiAun) X,

hence

H = — (‘422 - I—It—1—14412)_1 (A21 — Ht+1A11) .

Starting from an arbitrary initial value Hy, this equation is iterated backward, so
that
H=lim H,.
t——00

Therefore, X1 can be expressed in an autoregressive form:
X1 =MX; 4 v with M = A1 + ApH. (16)

Thus, the model can then be cast in a usual ” backward-looking” state-space form,
adding to eq. (16) the following measurement equation:

Yt:CXt—}—et. (17)
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Model (16)-(17) can be estimated using the full-information maximum likelihood
approach. For this model, the measurement eq. (17) is useless here, since all X;
variables are observed. The log-likelihood is therefore written as

nT e s
1 . ] o
logL = — 5 log (21) — 3 ;_1 log [X¢| — B tg_l AT

The estimation algorithm works in the following way. For each value of A and ¥, the
resulting A and M matrices are computed. The log-likelihood function can then be
evaluated and maximized over the parameters of matrices A and 3.
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Table 1: FIML estimate of the econometric models

Panel A: The US

Panel B: Germany

Parameter Estimate Standard-statistic Estimate Standardt-statistic
error error
Phillips curve
am 0.597 0.093 6.450 0.287 0.090 3.188
U 0.079 0.105 0.751 0.394 0.083 4772
a3 0.208 0.105 1.983 0.319 - -
U714 0116 - —_ — — _
ay 0.175 0.046 3.843 0.106 0.053 2.009
I-S curve
Bo (x100 3.395 0.701 4.844 3.366 0.659 5.109
By 1.150 0.085 13.483 0.666 0.092 7.224
By2 -0.200 0.086 -2.333 0.314 0.088 3.571
Bo -0.348 0.215 -1.618 -0.508 0.335 -1.518
Reaction function
1968-79:Q2
Jp (X100 0.268 0.163 1.639 -0.149 0.282 -0.527
Or-1 0.001 - - 0.446 0.397 1.123
dy 3.545 5.349 0.663 1.210 0.646 1.873
o 0.932 0.118 7.927 0.856 0.067 12.826
1979:Q3-98
dp (x100 0.533 0.277 1.925 0.433 0.252 1.720
O -1 0.435 0.171 2.536 0.436 0.315 1.384
dy 0.000 - - 0.272 0.206 1.322
o 0.725 0.057 12.621 0.827 0.064 12.837
Likelihood -495.439 -562.386
Phillips  I-Scurve Reaction Phillips  I-Scurve Reaction
curve function curve function
LBc(12) 22.652 16.721 29.488 16.121 11.663 32.163
p-value 0.031 0.160 0.003 0.186 0.473 0.001
LB2(12) 9.074 15.598 13.728 8.890 16.444 25.271
p-value 0.697 0.210 0.318 0.712 0.172 0.014
Realrate Inflation Nominal Realrate Inflation Nominal
(2™ period)  rate (2™ period)  rate
Steady-state values  3.395 3.350 6.745 3.366 1.971 5.337

Note: Standard errors are heteroscedasticity and autocorrelation consistent. LBc(12) is the
Ljung-Box statistic, corrected for heteroskedasticity, obtained by regressing residuals on 12
lags. LB2(12) is the Engle statistic for heteroskedasticity obtained by regressing squared
residuals on 12 lags. These statistics are distributed(a8). Steady-state values are defined

in Section 2.



Table 2: Implied parameters for optimal monetary-policy rules using program (8)

Weights in the

: Optimal parameter values Unconditional standard deviations
loss function

(A;1-A) o1 o} o On Oy k=0;
Panel A: The US
(0.00;1.00) 0.63 2.96 0.68 3.68 1.66 6.00
(0.50;0.50) 2.25 2.49 0.71 2.26 2.01 6.00
(1.00;0.00) 2.61 1.47 0.75 2.13 2.38 6.00
(0.00;1.00) 0.63 1.55 0.71 3.21 1.93 5.00
(0.50;0.50) 1.26 1.33 0.73 2.53 2.15 5.00
(1.00;0.00) 1.38 0.86 0.73 2.44 2.39 5.00
(0.00;1.00) 0.60 1.00 0.70 3.10 2.12 4.70
(0.50;0.50) 0.90 0.88 0.72 2.72 2.26 4.70
(1.00;0.00) 0.97 0.64 0.72 2.65 2.42 4.70
Model estimate 0.43 0.00 0.72 3.40 3.10 4.75

Panel B: Germany

(0.00;1.00) 0.67 2.43 0.76 4.66 1.98 6.00
(0.50;0.50) 2.43 2.59 0.77 2.94 2.61 6.00
(1.00;0.00) 2.55 1.08 0.81 2.59 3.59 6.00
(0.00;1.00) 0.63 1.25 0.77 3.87 2.40 5.00
(0.50;0.50) 1.26 1.33 0.79 3.13 2.75 5.00
(1.00;0.00) 1.32 0.72 0.79 2.89 3.39 5.00
(0.00;1.00) 0.60 0.84 0.77 3.62 2.70 4.70
(0.50;0.50) 0.85 0.85 0.78 3.27 2.89 4.70
(1.00;0.00) 0.91 0.59 0.78 3.11 3.29 4.70

Model estimate 0.43 0.27 0.82 3.80 4.00 4.90




Table 3: Implied parameters for optimal monetary-policy rules using program (7)

Weights in the

: Optimal parameter values Unconditional standard deviations
loss function

(Mres Hy 5 1= i ly) o1 oY O On Oy Gi
Panel A: The US
Inflation targeter 2.98 1.63 0.74 2.08 2.38 6.31
(0.95;0.00;0.05)
Output-gap targeter 0.63 2.85 0.69 3.64 1.67 5.91
(0.00;0.95;0.05)
Interest-rate targeter  0.54 0.36 0.68 3.11 2.51 4.54
(0.00;0.00;1.00)
Balanced preferences 0.89 0.87 0.71 2.72 2.26 4.71

(0.35;0.35:0.30)

Model estimate 0.43 0.00 0.72 3.40 3.10 4.75

Panel B: Germany

Inflation targeter 3.20 1.26 0.81 2.51 3.67 6.55
(0.95;0.00;0.05)
Output-gap targeter 0.67 3.07 0.75 5.09 1.85 6.58
(0.00;0.95;0.05)
Interest-rate targeter  0.56 0.47 0.76 3.46 3.20 4.61
(0.00;0.00;1.00)
Balanced preferences 0.93 0.94 0.78 3.24 2.86 4.77

(0.35;0.35:0.30)

Model estimate 0.43 0.27 0.82 3.80 4.00 4.90




Table 4: Implied parameters for the German optimal monetary-policy rules for various
values ofa,, using program (7)

Weights in the

: Optimal parameter values Unconditional standard deviations
loss function

(M ; Hy ; 1- un_Uy) o1 6y & On Oy Gi
Model estimate 0.21 0.38 0.91 4.93 4.20 4.92
Optimal rule with estimated nonpolicy parameters (a,=0.106)

(0.00;0.70;0.30) 0.63 1.16 0.77 3.81 2.46 4.94
(0.35;0.35;0.30) 0.93 0.94 0.78 3.24 2.86 4.77
(0.70;0.00;0.30) 1.15 0.67 0.79 2.97 3.35 4.88
a,~=0.158

(0.00;0.70;0.30) 0.64 1.30 0.77 3.59 2.24 4.98
(0.35;0.35;0.30) 0.96 1.13 0.78 3.12 2.49 4.92
(0.70;0.00;0.30) 1.20 0.94 0.78 2.92 2.75 5.05
a,=0.054

(0.00;0.70;0.30) 0.60 1.01 0.77 4.56 3.00 5.38
(0.35;0.35;0.30) 0.88 0.75 0.78 3.66 3.75 4.88

(0.70;0.00;0.30) 1.06 0.37 0.80 3.16 5.08 4.94




Table 5: Implied parameters for the German optimal monetary-policy rules for various
values of 8, using program (7)

Weights in the

: Optimal parameter values Unconditional standard deviations
loss function

(M ; Hy ; 1- un_Uy) o1 6y & On Oy Gi
Model estimate 0.21 0.38 0.91 4.93 4.20 4.92
Optimal rule with estimated nonpolicy parameters (3,=—0.508)

(0.00;0.70;0.30) 0.63 1.16 0.77 3.81 2.46 4.94
(0.35;0.35;0.30) 0.93 0.94 0.78 3.24 2.86 4.77
(0.70;0.00;0.30) 1.15 0.67 0.79 2.97 3.35 4.88
B,~—0.84

(0.00;0.70;0.30) 0.58 1.04 0.70 3.61 2.36 4.39
(0.35;0.35;0.30) 0.86 0.81 0.72 3.02 2.81 4.14
(0.70;0.00;0.30) 1.06 0.50 0.74 2.73 3.47 4.22
B=-0.17

(0.00;0.70;0.30) 0.73 1.49 0.86 4.53 2.75 6.80
(0.35;0.35;0.30) 1.08 1.36 0.87 3.94 3.00 6.79

(0.70;0.00;0.30) 1.35 1.20 0.87 3.67 3.24 6.97




Table 6: Implied parameters for the German optimal monetary-policy rules for various
values of B,1+8,,, using program (7)

Weights in the

: Optimal parameter values Unconditional standard deviations
loss function

(M ; Hy ; 1- un_Uy) o1 6y & On Oy Gi
Model estimate 0.21 0.38 0.91 4.93 4.20 4.92
Optimal rule with estimated nonpolicy parameters (B,+/3,,=0.98)

(0.00;0.70;0.30) 0.63 1.16 0.77 3.81 2.46 4.94
(0.35;0.35;0.30) 0.93 0.94 0.78 3.24 2.86 4.77
(0.70;0.00;0.30) 1.15 0.67 0.79 2.97 3.35 4.88
ﬁy1+ﬁy2:1.05

(0.00;0.70;0.30) 0.71 1.53 0.77 3.93 2.50 5.39
(0.35;0.35;0.30) 1.05 1.35 0.78 3.34 2.86 5.26
(0.70;0.00;0.30) 1.32 1.12 0.79 3.07 3.27 5.41
,By1+,3y220.91

(0.00;0.70;0.30) 0.51 0.71 0.75 3.72 2.40 4.60
(0.35;0.35;0.30) 0.72 0.46 0.76 3.15 2.83 4.38

(0.70;0.00;0.30) 0.84 0.14 0.76 2.89 3.37 4.47




Fig. 1: Inflation rate, output gap and short-term interest rate
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Fig. 3: Simulation of a temporary I-S shock under estimated rule (ER) and optimal rule

(OR)
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