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Abstract

We propose a novel mechanism to facilitate understanding of systemic risk in finan-

cial markets. The literature on systemic risk has focused on two mechanisms, common

shocks and domino-like sequential default. We provide a new model that draws on the

games-on-networks literature. Transmission in our model is not based on default. In-

stead, we provide a simple microfoundation of banks’profitability based on competition

incentives and the outcome of a strategic game. As competitors’ loans change, both

for closely connected ones and the whole market, banks adjust their own decisions as a

result, generating a ‘transmission’of shocks through the system. Our approach permits

us to measure both the degree that shocks are amplified by the network structure and
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the manner in which losses and gains are shared. We provide a unique equilibrium

characterization of a static model, and embed this model into a full dynamic model of

network formation. Because we have an explicit characterization of equilibrium behav-

ior, we have a tractable way to bring the model to the data. Indeed, our measures of

systemic risk capture the propagation of shocks in a wide variety of contexts; that is,

it can explain the pattern of behavior both in good times as well as in crisis.

Keywords: Financial networks, interbank lending, interconnections, network cen-
trality, spatial autoregressive models.

JEL Classification: G10, C21
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1 Introduction

Since the onset of the financial crisis in August of 2007, the discourse about bank safety has

shifted strongly from the riskiness of financial institutions as individual firms to concerns

about systemic risk.1 As the crisis evolved, the debate did as well, with concerns about

systemic risk growing from too-big-to-fail (TBTF) considerations to too-interconnected-to-

fail (TITF) ones. The spectacular collapse of Lehman Brothers in September of 2008 and

the subsequent rescue of AIG brought this to the forefront of academic and policy debates.2

This paper has two goals. First, to our knowledge, this paper is unique to the finance

literature in providing a description of the propagation of financial risk that explicitly models

agent incentives and behavior on a network. It is well known and accepted that banks acts

strategically given the market and regulatory incentives they face; however, the existing

network models in the literature assume that banks do not take into account the optimization

problems of other banks in the system. We apply the new methods of optimization in

networks (Goyal, 2007; Jackson, 2008; Jackson and Zenou, 2012) to the interbank market

with a point-in-time model of homogeneous banks and no defaults.3 Using these methods,

we are able to precisely identify the equilibrium quantity of lending due to the network

1Indeed, even prior to the crisis there is a wide range of research on the importance of interbank markets,

including some that address the systemic risk inherent to these markets. Some examples include Freixas

et al. (2000), Iori and Jafarey (2001), Boss et al (2004), Furfine (2003), Iori et al. (2006), Soramäki et

al. (2007), Pröpper et al. (2008), Cocco et al. (2009), Mistrulli (2011), and Craig and Von Peter (2010).

Each of these discuss some network properties or discuss the importance of these markets to systemic risk

evaluation.
2A general perception and intuition has emerged that the interconnectedness of financial institutions is

potentially as crucial as their size. A small subset of recent papers that emphasize such interconnectedness

or try to explain it include Allen et al., Babus and Carletti (2010), Amini et al. (2010), Cohen-Cole et al.

(2011), Boyson et al. (2010), Adrian and Brunnermeier (2009), and Danielsson et al. (2009).
3We relax both assumptions towards the end of the paper. The homogeneous agents model does a good

job of describing patterns while conveying our methodology. It also greatly reduces mathematical complexity

and thus exposition.
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structure.

Second, we use this new model to describe a form of systemic risk. Our measure will

highlight how the structure of a network can propagate incentives. What we mean by this is

that small changes in uncertainty, risk, or behavior can propagate through a network even

without defaults. This propagation is well understood from an institutional perspective;

what remains is to link this type of phenomena explicitly to network theoretical tools so that

these phenomena can be understood structurally. This structural view is important because

the exact topology of the network can fundamentally alter incentives, prices, volatility and

more. We provide both a measure of total systemic risk, λ, as well as illustrate a method

to calculate the contribution of individual banks to this total. Importantly, both of these

measures emerge directly from the optimization problem of banks.

We obtain the following results: (i) The proposed method succeeds at characterizing the

variation in lending in the European interbank market, both before and after the crisis. The

dynamic model is able to explain more than 60% of the change in network structure over

time across our period of study. (ii) We find that aggregate systemic risk was relatively

constant over time. (iii) the contribution to systemic risk change significantly from 2002 to

2007, reflecting a relatively even distribution at the beginning of the period, and a highly

skewed one just before the crisis. (iv) We show that the structure of the networks can have

a large influence on the price level and volatility. In a simple example, we illustrate that a

hypothetical star-shaped network of 4 banks has double the average transaction price and

30 times the volatility of a similarly sized, circle-shaped network.

With these results in hand, we highlight a number of features of the models and their

extensions that have implications for financial policy. Because of the tight link between

network structure and market prices / volatility, policymaker knowledge of financial network

4



structure provides a potential tool in ensuring financial stability.

The current financial networks literature is largely based on random network and pref-

erential attachment models both using models from the applied mathematics and physics

literature (Albert and Barabási, 2002; Easley and Kleinberg, 2010; Newman, 2010). The

preferential attachment model (Barabási and Albert, 1999) is effectively based on a random

network approach since agents form links in a probabilistic way leading to more popular

nodes being more likely to be chosen (the so-called rich-get-richer model). To this class of

models belongs simplified networks with simple shocks, including models of cascading de-

fault. See, for example, Allen and Gale (2000), Herring and Wachter (2001), and Amini

et al. (2010). One mechanism to generate systemic risk comes from Herring and Wachter

(2001), in which agents are simultaneously impacted by a shock to underlying asset prices.

While not a network approach per se, this paper typifies a large body of research which

looks at common bank incentives in the face of a shock. The second mechanism is the Allen

and Gale (2000) one in which the default of a given entity can lead to a domino-like series

of subsequent defaults based on exposures to the defaulting entity. A newer class of model

updates the networks approach to specify that links between banks are based on preferential

attachment; that is, while links are still random, banks may be more likely to link with banks

that have already many links. For example, Allen et al. (2012) illustrate using this approach

how the accumulation of exposure to shocks depends on the incentives for individual banks

to diversify holdings.

A key emphasis in our paper is that we will extend the current literature on systemic risk

to include the strategic interactions of banks in a network. We highlight in our model how

the integration of strategic action in finance networks produces distinct results from the other

methods. Most importantly, building up from first principles, it shows how incentives and
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uncertainty can propagate through financial networks, thus generating systemic risk. This

occurs even in the absence of defaults or risk. A key feature of our model is the existence

of a unique equilibrium outcome of bank lending behavior for any network pattern. This

uniqueness allows us to directly estimate from an analog to the first order condition. Indeed,

the model can capture the propagation of shocks in a wide variety of contexts; that is, it can

explain the pattern of behavior both in good times as well as in crisis.

We take the modeling exercise another step forward. As shocks hit a system, the existing

pattern of network links will evolve. As such, reduced form and/or static models of systemic

risk may be insuffi cient for understanding the importance of interconnectedness on financial

markets. With this in mind, we explicitly embed our static model into a complete dynamic

model of network formation. Thus, we are able to characterize not only the equilibrium

pattern of behavior at each point in time, but also how this behavior evolves over time. As

banks form and break links, the structure of the network will change, and the nature of

systemic risk with it. Our model is useful in that we can discuss how systemic events emerge

even in the absence of defaults (e.g. runs on the bank, flights to quality, etc.).

Once we have developed the static and dynamic models and shown their ability to match

the empirical patterns in European interbank data, we provide a set of extensions. In one

case, we show that because the structure of the network impacts incentives, whether capital

requirements bind for a given bank will depend on market structure. Once we separate the

portion of lending due to network structure, we can show that an identical bank can be

capital constrained in one network and not constrained in another. This finding suggests an

alternate route to bank regulatory policy.

While our core model is developed with homogeneous agents and no default in order to

illustrate the ability of the techniques to match the data, we extend the model to include
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ex-ante heterogeneity and a bank-specific risk premium. This allows us to derive bank-

specific loan prices. We illustrate that the model has the Nash equilibrium form as in the

homogeneous agent, zero default case, such that the rest of our results follow accordingly.

2 Stylized facts and Interbank Lending

A now widely discussed feature of the banking system is the presence of an interbank lending

market. Bank balance sheets are typically composed of loans on the asset side and deposits

(plus equity) on the liability side.

[Insert F igure 1 here]

Regularly, the natural businesses of banks leads to higher loans or deposits on a given

day. These imbalances can be rectified in the short term through the interbank market.

For example, a bank with $1100 in loans, $900 in deposits and $100 in equity can use the

interbank market to borrow an additional $100 to fully fund its balance sheet. Towards the

end of day, the treasury department of a bank seeks to find available funds, or lend excess

deposits. When the interbank market was very liquid, some banks used the market to fund

a large portion of their balance sheet, effectively relying on the presence of the market in

each subsequent day. Instead of collecting deposits, a bank could simply issue loans and fill

the liability side of the balance sheet with interbank deposits.

When the crisis arrived, a combination of credit quality fears and liquidity shortages

led to diffi culties in the interbank market (Afonso et al., 2011). US and European central

banks intervened at various points in time to ensure that banks would have continued access
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to funding. The Federal Reserve began this effort with the TAF in December of 2007.

Eventually, the Federal Reserve created a wide variety of related programs and the European

Central Bank moved on October 15 of 2008 to a ‘full-allotment’policy in which it provided

unlimited credit to banks in the euro area.

For our purposes, the key question is the degree to which the network features of the

interbank market are important in determining access, profitability and liquidity. It has

been widely acknowledged that the markets are not complete networks; many banks would

establish relationships with other banks either through repeated transactions or through

commitments to future lending. While banks in crisis will call around to look for addi-

tional liquidity, the established lending relationships are a primary source of funding. As an

example, many banks during normal times would simply roll-over existing loans at expiry.

We use transaction level data on interbank lending from an electronic interbank mar-

ket. The e-MID SPA (or e-MID) was the reference marketplace for liquidity trading in the

Euro area during the time period studied. It was the first electronic marketplace for in-

terbank deposits (loans), a market that has traditionally been conducted bilaterally. Our

data includes every interbank loan transaction conducted on the e-MID during the time

period from January 2002 to December 2009. During this time period, transactions on this

exchange represented about 17 percent of the Euro area market. As such, during this time

period, it served as a good representation of general market activity. Indeed, the 2008 Euro

Money Market Study published by the ECB in February of 2009 confirmed that e-MID prices

tracked the Euro overnight index average (EONIA) closely until the crisis started in August

of 2007 (Euro Study 2009).

The e-MID market is an open-access one. All banks in the European interbank market

can participate. The market opens at 8am and closes at 6pm Central European Time. Both
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bids and asks can be posted on the exchange along with a price and quantity. Each trader

may decide to initiate a transaction with any of the counterparties present on the book. Once

a trader chooses the transaction, the two parties bilaterally negotiate the trade. The benefit

of the bilateral negotiation is that it allows each party the ability to refuse the transaction,

change the quantity and/or the price. Such bilateral negotiation allows banks to maintain

lending limits for each specific counterpart. Outside of e-MID, banks privately negotiate

lines of credit (liquidity guarantees) with each other and conduct regular transactions with

each other based on these lines. As a result, e-MID can support the continuation of the

bilateral lending arrangements without forcing banks to accept / give loans outside their

prior guidelines.

Table 1 reports descriptive statistics for the e-MID market. We report the average daily

volume for overnight and total lending. As well, we include the proportion of lending made

by the 25 largest market participants, which averages about 20% prior to the crisis and 5-10%

after. In addition to total volumes dropping, the market shifts from being highly centralized

to considerably less so after the crisis. This finding is consistent with our estimation of the

role of centrality over time; we find below that the importance of being central declines after

the crisis.

[Insert Table 1 here]

We also show in Figure 2, the daily volume of lending for overnight and long-term loans.

This shows the stylized patterns of lending in this market. Notice that lending volume of

long-term loans drops precipitously beginning with the onset of the crisis in August of 2007.

Both overnight and long-term loans decline following the beginning of the ECB full allotment
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policy in October of 2008. Our model and empirical analysis will seek to explain some of

the variation in lending quantities during this volatile time period.

[Insert F igure 2 here]

In Figure 3 we report the daily price volatility, as the standard deviation of prices. The

reverse pattern is observed here. After a long period with relatively low volatility dating back

to the beginning of 2002, the onset of the crisis saw price volatility increase dramatically.

Two significant increases are apparent, in August of 2007 and in October of 2008. Towards

the end of the paper, we will illustrate that the network models we use provide a mapping

from network structure to price level and price volatility.

Each of these two figures shows the daily value as well as a two-month moving average.

[Insert F igure 3 here]

Our data includes approximately 250 institutions that participated in at least one trans-

action during the time period. Loans in the database range from overnight to two years

in length, though about 70% of the loans are for overnight alone. Our information spans

945,566 loans of all types, of which 752,901 are overnight loans. We will focus on overnight

loans for simplicity.4

The principal purpose of the interbank market is provide a mechanism for banks to re-

allocate deposit imbalances. For larger shocks or gross liquidity needs, most institutions

borrow directly from the ECB.

4Results of similar models estimated with longer term loans as well is available on request from the

authors.
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3 Static Model

3.1 Notation and model

We begin with a simple static model of a bank whose balance sheets is given in Figure 1.

On the asset side of the balance sheet, we include cash, loans and interbank loans. On the

liability side: deposits, interbank borrowing and equity. Our primary object of interest will

be either interbank loans or interbank deposits. In addition, we specify a basic leverage

constraint for each bank as:

ξ ei ≥ assets

where ei is the equity of bank i and ξ is the leverage constraint. For simplicity, we group

cash and loans into a single variable Xi (i.e. loans + cash = Xi). Then we can write that

interbank loans at each point in time must satisfy two criterion. One, given a value for

liabilities and for Xi,

qi = liabilitiesi −Xi

The equality conditions simply means that banks must match assets and liabilities. The

assumption that interbank loans are the remaining choice on the balance sheet reflects the

nature of this market. Precise deposits balances are determined by customer preferences,

loans are typically much longer maturity and cannot be underwritten or sold on a moment’s

notice with any reliability, and equity takes weeks or months to issue. Thus, in the perspec-

tive of a day or two, one of the only free variables for a bank to clear its balance sheet is the

interbank market.5

5We abstract for now from the ability to borrow from the central bank. This is an alternate mechanism

to match the balance sheet. However, this type of borrowing typically comes at a penalty rate. We return

to penalty rate borrowing in the policy section at end.
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Two, the leverage constraint requires that

ξ ei ≥ Xi + qi (1)

This reflects the fact that banks cannot lend more funds than some multiple of their equity.

In the time period we address, European banks were not bound explicitly by a leverage con-

straint. However, Basel capital constraints formed a type of upper bound on the quantity

of lending possible. We include this feature particularly because new Basel III regulations

explicitly discuss additional capital requirements for Systemically Important Financial In-

stitutions (SIFIs). The borrowing side obviously has no such constraint.

As we develop the model, two key features will emerge: global strategic substitutability

and local strategic complementarities. These will show that, as total quantities in the market

increase, prices will fall. However, at the local level, between two agents, there will be an

incentive to increase prices when quantities increase due to the complementarity effect. The

model will find an equilibrium where these effects are balanced.

To our knowledge, the fact that we incorporate both local and global components is

unique to the financial networks literature; by incorporating both the direct network influ-

ences as well as the system-wide effects, our model is particularly suited to the description

of financial markets. These markets are influenced both by prices (global) and as well by

network impacts (local).

We look at a population of banks. We define for this population a network g ∈ G as a

set of ex-ante identical banks N = {1, . . . , n} and a set of links between them. We assume

at all times that there are least two banks, n ≥ 2. Links in this context can be defined in

a variety of ways. In other work, they have represented the exchange of a futures contract

(Cohen-Cole et al., 2011). In the banking networks that we study, the links will represent
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the presence of a interbank loan.

The set of bank i’s direct links is: Ni(g) = {j 6= i | gij = 1}. The cardinality of this set is

denoted by ni(g) = |Ni(g)|.6 The n−square adjacency matrix G of a network g keeps track

of the direct connections in this network. By definition, banks i and j are directly connected

in g if and only if gij = 1, (denoted by ij), and gij = 0 otherwise. Links are taken to be

reciprocal, so that gij = gji (undirected graphs/networks). By convention, gii = 0. Thus G

is a symmetric (0, 1)−matrix. All our theoretical results hold with directed (i.e. gij 6= gji)

and weighted networks, which would imply that G is an asymmetric matrix with weights

between 0 and 1.

We hypothesize that these direct links produce some type of reduction in costs of the

collaborating banks. For example, as the size of the loan increases, the cost per dollar of

loan is reduced for both parties to the loan. It is a straightforward assumption that the

operational costs of a trading floor or treasury operation decline per dollar of loan as loan

size increases.

We will model the quantity choice based on competition in quantities of lending a la

Cournot between n banks with a single homogenous product (a loan). We will then look

at quantities of borrowing on the same market. This distinction is useful for three reasons.

First, it allows us to look separately at what happens to each side of the market. As will be

apparent below, the two markets evolve differently during the 8 years we study. Second, it

allows us to use well-established competition frameworks, such as Cournot. These are based

on the idea of a group of firms competiting for customer business. Looking only at one side

of the market allows this view. Third, looking at each side of the market captures the fact

that we need gross lending amounts to understand competitive forces. If a bank borrows

6Vectors and matrices will be denoted in bold and scalars in normal text.
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$100 and lends $99, to understand the network, we need to know both quantities; a netted

$1 borrowing does not capture the complexity and scale of the interactions. Recall that we

will precisely identify who lends and borrows from which other banks.

We assume the following standard linear inverse market demand where the market price

is given by:

p = θ −
∑
j∈N

qj (2)

where θ > 0. The marginal cost of each bank i ∈ N is ci(g). The profit function of each

bank i in a network g is therefore given by:

πi(g) = pqi − ci(g)qi

= θqi −
∑
j∈N

qiqj − ci(g)qi

where qi is the loan quantity produced by bank i. We assume throughout that θ is large

enough so that price and quantities are always strictly positive.

Our specification of inter-related cost functions is as follows. The cost function is assumed

to be equal to:

ci(g) = c0 − φ
[

n∑
j=1

gijqj

]
(3)

where c0 > 0 represents a bank’s marginal cost when it has no links while φ > 0 is the cost

reduction induced by each link formed by a bank. The parameter φ could be bank specific

as well so that φi, but for simplicity of notation, we do not report this case.

Equation (3) means that the marginal cost of each bank i is a decreasing function of

the quantities produced by all banks j 6= i that have a direct link with bank i. As stated

above, this is because the operational costs of a trading floor or treasury operation decline

per dollar of loan as loan size increases. This is the specification that drives the functional

relationships between banks.
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To ensure that we obtain a reasonable solution, we assume that c0 is large enough so that

ci(g) ≥ 0, ∀i ∈ N , ∀g ∈ G. The profit function of each bank i can thus be written as:

πi(g) = pqi − ci(g)qi

= θqi −
∑
j∈N

qiqj − c0qi + φ
n∑
j=1

gijqiqj

= aqi − q2i −
∑
j 6=i

qiqj + φ
n∑
j=1

gijqiqj (4)

where a ≡ θ − c0 > 0.

We highlight a few features of equation (4). First, we can see that profits are a negative

function of total loans. This we call global strategic substitutability, as the effect operates

only through the market and not through the direct links that form the network. So as qj

increases, ∂πi(g)
∂qi

is reduced as demand falls.

Second, we can see that profit is increasing in the quantity of direct links, via the cost

function impact. This we refer to as local strategic complementarities since if j is linked with

i, then if qj increases
∂πi(g)
∂qi

is increased because of the reduction in the cost. Total profits

are of course, dependent on the two jointly.

Third, we can define σij as the cross partial of profitability with respect to a bank’s

quantity change and another bank’s quantity change. We have:

σij =
∂2πi(g)

∂qi∂qj
=

{
σ = −1 + φ

∑n
j=1 gijqj if gij = 1

σ = −1 if gij = 0
(5)

so that σij ∈ {σ, σ}, for all i 6= j with σ ≤ 0.

This last feature highlights the mechanism of the model. A shock to a connected bank

changes the incentives of a bank to lend, precisely through the function (5). Notice that

the model generates systemic risk insofar as shocks that impact a given bank, such as an
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exogenous decrease in capital and ability to lend, pass through to the rest of the market

through a competition mechanism. The global effect of the reduction in lending by a single

bank is an increase by others. The local effect, however, that passes through the network

linkages, is that costs increase. As a result, loans volumes of direct network links decline as

well. Once network links change their choices, their links do so as well, and so on.

3.2 Equilibrium loans

Consider a Cournot game in which banks chose a volume of interbank lending conditional

on the actions of other banks. This game requires common knowledge of the actions of other

banks. We describe below that our data will allow this assumption; all bid and asks are

posted on the system. We expand the standard game to fit the model above. Agents have

the defined profit function in (4), which implies that cost is intermediated by the network

structure.

It is easily checked that the first-order condition for each bank i is given by:

q∗i =
1

2
a− 1

2

∑
j 6=i

qj +
1

2
φ

n∑
j=1

gijqj (6)

Formally, we show below that this game has a unique Nash equilibrium.

We use a network centrality measure due to Katz (1953), and latter extended by Bonacich

(1987), that proves useful to describe the equilibrium of our network model.

The Katz-Bonacich network centrality The Bonacich centrality will provide a mea-

sure of direct and indirect links in the network. Effectively, a relationship between two banks

is not made in isolation. If bank A lends money to bank B, and bank B already lends to

bank C, the strategic decisions of bank A will depend, in part on the strategic decisions of B.

Of course, B’s decisions will also be a function of C’s. The Katz-Bonacich measure will help
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keep track of these connections and, as we will see in the subsequent section, has a natural

interpretation in the Nash solution. Denote by ω (G) the largest eigenvalue of G.

Definition 1 Consider a network g with adjacency n−square matrix G and a scalar φ such

that M(g, φ) = [I−φG]−1 is well-defined and non-negative. Let 1 be the n−dimensional

vector of ones. Then, if φω (G) < 1, the Katz-Bonacich centrality of parameter φ in g is

defined as:

b(g, φ) =

+∞∑
k=0

φkGk1 = [I−φG]−1 1 (7)

where φ ≥ 0 is a scalar and 1 is a vector of one.

An element i of the vector b(g, φ) is denoted by bi (g, φ). For all b(g, φ)∈IRn, b (g, φ) =

b1 (g, φ) + ... + bn (g, φ) is the sum of its coordinates. We provide additional description in

Appendix 1. Observe that, by definition, the Katz-Bonacich centrality of a given node is

zero when the network is empty and is greater than 1 if the network is not empty. It is also

null when φ = 0, and is increasing and convex with φ.

We now characterize the Nash equilibrium of the game.

Proposition 1 Consider a game where the profit function of each bank i is given by (4).

Then this game has a unique Nash equilibrium in pure strategies if and only if φω (G) < 1.

This equilibrium q∗ is interior and given by:

q∗ =
a

1 + b (g, φ)
b (g, φ) (8)

This result is a direct application of Theorem 1 in Ballester et al. (2006). Appendix

1 shows in more detail how the first order condition can be written as a function of Katz-

Bonacich centrality. It also provides an example.
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This solution is useful for a couple of reasons: One, notice that this equation provides a

closed form solution to the game with any number of banks and to calculate output, only

the matrix of interconnections G and the bank specific cost functions are needed. Two, this

equation provides the basis for estimation of any network linked bank decision. We explore

this implication below in more detail.

We can now calculate the equilibrium profit of each bank by replacing the equilibrium

value of q∗i into the profit function (4). It is easily verified that we obtain:

π∗i = (q
∗
i )
2 =

a2b2i (g, φ)

[1 + b (g, φ)]2
(9)

so that the profit function of each bank is an increasing function of its Bonacich centrality.

A key parameter in this equilibrium result is φ, the coeffi cient in the equation (7) that

measures how much of a shock to agents is passed on to connected agents. We estimate the

coeffi cient below φ. Here we illustrate that φ is a multiplier and, in our context, is a measure

of systemic risk that propagates risk through incentives. Consider the same n banks but

without a network (i.e. φ = 0) so that there are no links (or loans) between them and ci = c0.

In that case, the profit of each firm is given by:

πi = θqi −
n∑
j=1

qiqj − c0qi

The Nash equilibrium is such that:

q∗i = a−
n∑
j=1

q∗j

where a ≡ θ − c0. Summing the n first-order conditions, we obtain:

qNO∗ =

(
n

1 + n

)
a (10)
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where q∗ =
n∑
j=1

q∗j , so that

qNO∗i =
a

1 + n
(11)

Comparing this result with the network case, i.e. (6) and some additional math, shown in

Appendix 2, finds an additional term, which is a positive function of φ. Indeed,

qNET∗i =
a

(1 + n)︸ ︷︷ ︸
quantity produced with no network

+
φ

(1 + n)

[
n

n∑
j=1

gijq
∗
j −

n∑
k 6=i

n∑
j=1

gkjq
∗
j

]
︸ ︷︷ ︸

extra quantity due to multiplier effects

The intuition is clear. Total output is higher with networks than without networks and

the difference is measured as qNET∗ − qNO∗ =
(

φ
1+n

)∑n
i=1

∑n
j=1 gijq

∗
j > 0. In other words,

total output increases by this value when network effects are present. This implies that

prices of loans are much lower with networks since pNO∗ = pNET∗ +
(

φ
1+n

)∑n
i=1

∑n
j=1 gijq

∗
j ,

which creates even more interactions (i.e. loans). As a result, profits are much higher with

networks.

To better understand the multiplier effect due to networks, consider the case of two banks

A and B (n = 2). Assume first that there is no network (i.e. φ = 0) so that no bank gives a

loan to the other. In that case, using (11), each bank will produce

qNO∗ = qNO∗A = qNO∗B =
a

3

Consider now the simplest possible network, that is each bank gives loans to the other bank,

i.e., g12 = g21 = 1. The adjacency matrix is:7

G =

(
0 1

1 0

)
7There are two eigenvalues: 1,−1 and thus ω (G) = 1. Thus the condition from Proposition 1, φω (G) < 1,

is now given by: φ < 1.
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We easily obtain:

b (g, φ) =
1

(1− φ)

(
1

1

)
and thus the unique Nash equilibrium is given by:

q∗ =
a

1 + 2
1−φ

b (g, φ) =
a

3− φ

(
1

1

)

that is

qNET∗ = qNET∗A = qNET∗B =
a

3− φ

Since φ < 1, then this solution is always positive and unique and

qNET∗ =
a

3− φ >
a

3
= qNO∗

In fact, we have:

qNET∗ = qNO∗ +
a φ

3 (3− φ)

or equivalently

qNET∗ =
3

(3− φ)q
NO∗

In this example, the multiplier is equal to 3/ (3− φ) > 1. One can see that this multiplier

increases in φ so that the higher is φ, the higher is the quantity of loans that will be given

to each bank. This means, in particular, that if there is a shock to this economy, φ, the

systemic risk, will propagate the risk at a factor 3/ (3− φ).

3.3 Equilibrium prices

One of the powerful features of the model is that it provides a structural link between

the network pattern and the equilibrium market price for interbank loans. Changing the

network structure changes equilibrium prices. This can be observed through two features of
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the model. First, the equilibrium quantity for each bank is expressed precisely in (8). As

the sum of these quantities change, the global effects will be to influence prices as in any

market. This is what we labeled global strategic substitutability, above. Two, the individual

patterns of links in the network will influence the local loan decisions. This local strategic

complementarities, also influences aggregate prices.

To be more precise, using the linear inverse market demand (2) and (8), we obtain the

following equilibrium price of loan transactions:

p∗ = θ −
∑
j∈N

q∗j = θ − b (g, φ)

1 + b (g, φ)
(12)

Example 1 Consider the two following directed networks:

[Insert F igure 4 here]

The network on the left panel is a circle (and its adjacency matrix is denoted by GC)

while the network on the right panel is a star (and its adjacency matrix is denoted by GS).

We have:8

GC =


0 1 0 0

0 0 1 1

0 0 0 1

1 0 0 0

 and GS =


0 0 0 1

0 0 1 1

0 0 0 1

0 0 1 0


where the first row corresponds to bank A, the second row to bank B, etc. Observe that

we have a directed network (since loans are by definition directed) and thus the adjacencies

matrices are asymmetric. We focus on outdegrees only, i.e. links (i.e. loans) that go from one

bank to the other one. In other words, we analyze the lending market. The two networks

have the same total number of banks (4) and have the same total numbers of loans (5) but

have a different structure.
8The largest (noncomplex) eigenvalue for GC is 1 and for GS , it is also 1. As a result, the eigenvalue

condition φω (G) < 1 is φ < 1 for both networks.
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In this framework, the Bonacich centrality is a measure of “popularity”since the most

central bank (i.e. node) is the one who gives the higher number of loans (i.e. links). Fortu-

nately, the symmetry of the adjacency matrix does not play any role in the proof of Propo-

sition 1 and thus the results are true for both directed and undirected networks. We can

see here how prices vary as a function of even relatively small changes in network structure.

Using Proposition 1, the unique Nash equilibrium is given by:
qC∗A
qC∗B
qC∗C
qC∗D

 = (θ − c0)
5 + 5φ+ 6φ2 + 2φ3 − φ4


1 + φ+ 2φ2 + φ3

1 + 2φ+ 2φ2 + φ3

1 + φ+ φ2

1 + φ+ φ2 + φ3


for the circle network and 

qS∗A
qS∗B
qS∗C
qS∗D

 = (θ − c0)
5


1

1 + φ

1

1


for the star-shaped network. The circle network where bank B has the highest Bonacich

centrality (and thus gives the highest loans quantities) is less symmetric than the star-

shaped one. Bank A is the second most active bank because it gives a loan to B. Then come

bank D and then bank C. On the contrary, for the star-shaped network, banks A, C, and

D give the same loan quantities while bank B has the highest Bonacich centrality. This is

because they all lend to the same bank D.

What is interesting here is the impact of network structure on the aggregate equilibrium

price of loans. In the circle network, each loan is priced at

pC∗ =

(
1− φ3 − φ4

)
θ + (4 + 5φ+ 6φ2 + 3φ3)c0

5 + 5φ+ 6φ2 + 2φ3 − φ4

where θ is the market demand from equation (2) and φ is the coeffi cient in the equation (7).
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For the star-shaped network, we obtain:

pS∗ =
(1− φ) θ + (4 + φ) c0

5

As a result, with four banks A, B, C and D, depending on the network structure, the price

for loans can differ. Indeed, it is easily verified that pS∗ > pC∗. This reflects the fact that the

star-shaped network induces less competition and thus less loan output than the star-shaped

network.

3.4 Equilibrium behavior with leverage constraints

Remember that we have a leverage constraint given by (1). We need to check that the Nash

equilibrium satisfies this condition. Define

qi ≡ ξ ei −Xi

Since ξ, ei and Xi are purely exogenous variables, we consider three possibilities. The first

is that no banks are constrained by the leverage constraint, i.e., the equilibrium quantity of

loans q∗i , defined by (8), is such that q
∗
i ≤ qi, for all i = 1, ..., n. In that case, all banks play

the Nash equilibrium described above and give a quantity of loans q∗i defined by (8). The

second is that all banks are constrained so that q∗i > qi, for all i = 1, ..., n. In that case,

the equilibrium is such that all banks provide loans equal to q∗i = qi ≡ ξ ei − Xi. Finally,

there is an intermediary case for which some banks are constrained by the leverage constraint

and some are not. To characterize this equilibrium, we rank banks by their position in the

network, i.e. their Bonacich centrality. Then, those for which q∗i ≤ qi will give loans equal

to q∗i defined by (8) while those for which q
∗
i > qi, which have q

∗
i = qi ≡ ξ ei −Xi.

This difference between constrained and unconstrained suggests that increasing the frac-

tion of constrained banks leads to a smaller fraction of banks propagating incentives through

23



the network. This can have a range of potential impacts on total systemic risk and the

allocation of risk in the system. Indeed, when ξ increases, more and more banks are con-

strained in their loan possibilities and are more likely to hit the leverage constraint so that

q∗i = qi ≡ ξ ei − Xi. Interestingly, this depends on the network structure so that the same

bank with the same leverage constraint can behave differently depending on the network it

belongs to. Consider again Example 1 (Section 3.3) and assume for bank C that9

(θ − c0)
(
1 + φ+ φ2

)
5 + 5φ+ 6φ2 + 2φ3 − φ4

< qC <
(θ − c0)
5

This implies that qS∗C > qC and q
C∗
C < qC and thus, in equilibrium,

qC∗C =
(θ − c0)

(
1 + φ+ φ2

)
5 + 5φ+ 6φ2 + 2φ3 − φ4

and qS∗C = qC ≡ ξ eC −XC

In other words, the same bank C in the circle network will produce its Nash equilibrium

quantity of loans while, in the star-shaped network, will hit the leverage constraint and will

lend loans so that qS∗C = qC . This is true for a given ξ. When ξ increases then banks are more

likely to hit the leverage constraint and will not give their “optimal”(i.e. Nash equilibrium)

quantity of loans.

4 Dynamic Model

In this section, we extend the model of Section 3 to include strategic link formation amongst

banks. This step is crucial in that it permits us to include in our analysis not only the

quantity and price choices amongst banks conditional on their existing network, but also

9Observe that, since φ < 1, we have:

(θ − c0)
(
1 + φ+ φ2

)
5 + 5φ+ 6φ2 + 2φ3 − φ4

<
(θ − c0)
5
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their decisions on how to change the network structure itself. The model here will show the

equilibrium outcome network structure conditional on these strategic choices. Such a model

gives us the ability to validate that our static model results are reasonable insofar as they are

not contradicted by strategic network formation incentives. It also allows us to investigate

how strategic behavior can impact network structure and liquidity availability.

Our central modeling assumptions will be that links are formed based on the profitability

tradeoff that emerges from the game in the static model. Effectively, banks know that the

game will be played in the subsequent period and that all other banks are also making

network formation decisions. Based on these, banks can choose whether or not to form a

link; that is, to make a loan to a new customer. We will also specify an exogenous probability

of link formation, α.10

To describe the network formation process we follow König et al. (2010a). Let time

be measured at countable dates t = 1, 2, ... and consider the network formation process

(G(t))∞t=0 with G(t) = (N,L(t)) comprising the set of banks N = {1, ..., n} together with

the set of links (i.e. loans) L(t) at time t. We assume that initially, at time t = 1, the

network is empty. Then every bank i ∈ N optimally chooses its quantity qi ∈ R+ as in the

standard Cournot game with no network. Then, a bank i ∈ N is chosen at random and

with probability α ∈ [0, 1] forms a link (i.e. loan) with bank j that gives her the highest

payoff. We obtain the network G(1). Then every bank i ∈ N optimally chooses its quantity

qi ∈ R+, and the solution is given by (8). The profit of each bank is then given by (9) and

only depends on its Bonacich centrality, that is its position in the network. At time t = 2,

again, a bank is chosen at random and with probability α decides with whom she wants to

10While we don’t discuss in detail, this asssumption can be relaxed in a number of ways. For example,

König et al. (2010b) show that a capacity constraint, what this model would interpret as a capital constraint,

generates similar network patterns.

25



form a link while with probability 1−α this bank has to delete a link if she has already one.

Because of (9), the chosen bank will form a link with the bank that has the highest Bonacich

centrality in the network. And so forth.

As stated above, the randomly chosen bank does not create or delete a link randomly.

On the contrary, it calculates all the possible network configurations and chooses to form

(delete) a link with the bank that gives her the highest profit (reduces the least her profit).

It turns out that connecting to the bank with the highest Bonacich centrality (deleting the

link with the agent that has the lowest Bonacich centrality) is a best-response function for

this bank. Indeed, at each period of time the Cournot game described in Section 3 is played

and it rationalizes this behavior since the equilibrium profit is increasing in her Bonacich

centrality (see 9).

To summarize, the dynamics of network formation is as follows: At time t, a bank i is

chosen at random. With probability α bank i creates a link to the most central bank while

with complementary probability 1− α bank i removes a link to the least central bank in its

neighborhood.

Characterization of equilibrium We would like to analyze this game and, in partic-

ular, to determine, in equilibrium, how many links banks will have. More importantly, we

would like to describe the entire distribution of links for banks in the network. This degree

distribution gives the percentage of banks with number of links (degree) d = 1, ..., n. Recall

that the decision to add or delete a node is made based on bank optimization decisions that

emerge from our static model.

Our results follow the work in König et al. (2010a) who show that, at every period, the

emerging network is a nested split graph or a threshold network, whose matrix representation
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is stepwise. This means that agents can be rearranged by their degree rank and, conditional

on degree d 6= 0, agents with degree d are connected to all agents with degrees larger than

d. Moreover, if two agents i, j have degrees such that di < dj, this implies that their

neighborhoods satisfy Ni ⊂ Nj. Below, we will show how closely the theoretical patterns

implied by this model are replicated in the data.

Denote by N(d, t) the number of agents with degree d ≤ K/2 at time t. It can be shown

that the dynamic evolution is given by:

N(d, t′ + 1)−N(d, t′) =
(
1− α
n

)
N(d+ 1, t′) +

α

n
N(d− 1, t′)− 1

n
N(d, t′) (13)

N(0, t′ + 1)−N(0, t) =
(
1− 2α
n

)
− α

n
N(0, t) +

(
1− α
n

)
N(1, t) (14)

These equations mean that the probability to add nodes to banks with degree d is propor-

tional to the number of nodes with degree d−1 (resp. d+1) when selected for node addition

(deletion). The dynamics of the adjacency matrix (and from this the complete structure of

the network) can be directly recovered from the solution of these equations.

Since the complementG of a nested split graphG is a nested split graph, we can derive the

stationary distribution of networks for any value of 1/2 < α < 1 if we know the corresponding

distribution for 1− α. With this symmetry in mind we restrict our analysis in the following

to the case of 0 < α ≤ 1/2. Let {N(t)}∞t=0 be the degree distribution with the d-th element

Nd(t), giving the number of nodes with degree d in G(t), in the t-th sequence N(t) =

{Nd(t)}n−1d=0 . Further, let nd(t) = Nd(t)/n denote the proportion of nodes with degree d and

let nd = limt→∞ E(nd(t)) be its asymptotic expected value (as given by µ). In the following

proposition (König et al., 2010a), we determine the asymptotic degree distribution of the

nodes in the independent sets for n suffi ciently large.
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Proposition 2 Let 0 < α ≤ 1/2. Then the asymptotic expected proportion nd of nodes in

the independent sets with degrees, d = 0, 1, ..., d∗, for large n is given by

nd =
1− 2α
1− α

(
α

1− α

)d
, (15)

where

d∗(n, α) =
ln
(
(1−2α)n
2(1−α)

)
ln
(
1−α
α

) .

These equations precisely define the equilibrium degree distribution in the interbank

market. In the empirical section below, we will test the correspondence to the observed

empirical distribution in the European interbank market.

5 Empirical analysis

5.1 Empirical model and identification

We begin by defining a network of banks. Banks conduct transactions with other banks

nearly continuously; as such, we make an assumption about what defines a network. Since

the vast majority of transactions are overnight transactions and banks use the interbank

loan market for rectifying deposit imbalances, one can surmise that a reasonable network is

characterized by the transactions that occur in a short time frame. A one-day time period

is a natural time period to start with. That said, many overnight interbank loans are rolled

over the following day. While the lending bank typically has the option to withdraw funding,

the persistence in relationships implies that the networks that determine lending choices may

be slightly longer than a day. We will use one day as a benchmark measure of networks.11

11We have conducted extensive sensitivity analysis on this assumption that is available on request from

the authors. Slightly moving the time window used to define a network does not change the substance of

our results.
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Further supporting the use of a short-term network measure, the model above takes the

interbank lending/borrowing decision as the tool to balance the bank’s assets and liabilities,

taking the remainder of the balance sheet as given. Once we consider other assets and

liabilities with longer maturies, alternate network measures may be important.

Assume that there are K networks in the economy, defined by the number of days. Each

network contains nk banks. We can then estimate the direct empirical counterpart of the

first-order condition in the static model above, equation (6):

qi,κ = c+ φ
1

gi,k

nκ∑
j=1

gij,κqj,κ + υi,κ, for i = 1, ..., nκ ; κ = 1, ..., K. (16)

where c = 1
2
a − 1

2

∑n
j=1,j 6=i qj. This equation indicates that the equilibrium quantity choice

of a bank is a function of quantity choices of others in the same market. We denote as

qi,κ the lending or borrowing of bank i in the network k, gi,k =
∑nκ

j=1 gij,κ is the number

of direct links of i, 1
gi,k

∑nκ
j=1 gij,κqj,κ is a spatial lag term and υi,k is a random error term.

The spatial lag term is equivalent to an autoregressive term in a time regression: a length-

three connection in this model through lending connections is akin to a three period lag in a

time series autoregressive model. This model is the so-called spatial lag model in the spatial

econometric literature and can be estimated using Maximum Likelihood (see, e.g. Anselin

1988).12

Our goal is to make the claim that we are estimating the φ that corresponds to the

equilibrium outcome of the game described in Section 3.

12In the empirical model, we work with a row-standardized adjacency matrix, i.e. if we normalize the

spatial lag term by gi,κ =
∑nκ
j=1 gij,κ, the number of direct links of i. Because a row-standardized matrix

implies that the largest eigenvalue is 1, we present the analysis using this approach to ease the interpretation

of the results. Indeed, by providing a common upper bond for φ, it allows a comparison of the importance

of systemic risk in different network structures, i.e. for different G matrices.
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The basic identification issue that arise when estimating model (16) is the possible pres-

ence of unobservable factors affecting both an individual bank’s behavior and neighboring

banks’behavior. It is indeed diffi cult to disentangle the endogenous peer effects from the

correlated effects, i.e. effects arising from the fact that individuals in the same network tend

to behave similarly because they are subject to similar shocks. If banks are not randomly

assigned into networks, this problem might also originate from the possible sorting of banks

into networks according to unobserved group characteristics. Because the spatial lag term

contains the dependent variable for neighboring observations, which in turn contains the

spatial lag for their neighbors, and so on, a nonzero correlation between the spatial lag and

the error terms is a major source of bias. A number of papers using network data have dealt

with the estimation of network effects with correlated effects (e.g., Clark and Loheac 2007;

Lee 2007; Calvó-Armengol et al., 2009; Lin, 2010; Lee et al., 2010). This approach is based

on the use of network fixed effects to control for unobserved heterogeneity and exploits the

spatial allocation of agents into networks. In other words, having network data one can ex-

ploit two sources of variation: between networks and within networks (i.e. across individuals

in a given network). Similarly to a panel data context where we observe individuals over

time, we can thus estimate a fixed-effects model where the effects are fixed across individu-

als in the same networks (instead of fixed across time). Indeed the architecture of network

data allows an estimation procedure similar to a panel within-group estimator to control for

correlated effects.13 This is thus able to provide a reliable estimate of the relevant structural

parameter φ.

This strategy is adopted in our analysis and it is made more compelling in our case

13A more technical exposition of this approach can be found in Liu and Lee (2010). Bramoullé et al.

(2009) also deal with this problem and show formally the extent to which by subtracting from the variables

the network average, social effects are identified.
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study by distinguishing between lending and borrowing networks. Indeed agents in the same

network, k, could be lending or borrowing due to different shocks or incentives coming from

the demand or supply side of the market. By estimating model (16) separately for borrowers

and lenders we reduce the heterogeneity in the error term which is captured by the network

fixed effect.

5.2 Estimation results

Table 2 reports the estimation results of model (16) for each year between 2002 and 2009;

each year’s results is obtained pooling the different networks of transactions that arise in each

day of the year and including network fixed effects. Observe that network fixed effects do not

coincide with day fixed effects as there can be different separated networks of transactions

in each day. Panel A shows the results from lending networks. Panel B shows the results

from borrowing networks.

[Insert Table 2 here]

The positive and statistically significant estimates of φ point towards the existence of

a cross-sectional dependence in quantities that is not explicitly mediated by the market.

Looking at the R−squared values, one can see that this network model explain more then

10% of the variation of individual bank lending and borrowing, and, in some cases, as much

as 30%. Network structure thus appears to be important in explaining a bank’s lending

and borrowing activity. The estimates φ are roughly constant over time. Indeed, after

the influence of (unobserved) factors shaping the heterogeneity between networks have been

controlled for, the average correlation in outcomes between connected agents is about 0.5,
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both for lending networks (panel A) and for borrowing networks (panel b). The goal of our

analysis is to show the role of network position within each network to understand the precise

cascade in behavior that occurs between interconnected agents following an idiosyncratic

shock. Given an average φ of 0.5, what is the specific impact of a shock to a given bank

for others further away in the network structure and what is the aggregate impact across

the network? To understand systemic risk, we need to understand both the total risk to the

system, as well as the contributions of each agent to that risk.

We begin by considering the average impact to the system.

Our behavioral framework shows that the equilibrium quantity choice is related to the

position of each agent within the network of contacts, as captured by the Bonacich centrality,

and thus depends on the evolution of the network through the linking choices of each agent.

For each network of one day of transactions, we obtain a range of estimates for each year

between 2002 and 2009 (one for each day of each year). The results shows that not only

the difference between the minimum and maximum estimate for each year is small, but also

that they are almost constant across the years. Table 2 reports the maximum value in each

year and shows that the average correlation in outcomes between connected agents is about

0.5 between 2002 and 2009, both for lending networks (panel A) and for borrowing networks

(panel b) . The goal of our analysis is to show the role of network position within each

network to understand the precise cascade in behavior that occurs between interconnected

agents following an idiosyncratic shock. Given an average φ of 0.5, what is the specific

impact of a shock to a given agent for others further away in the network structure and what

is the aggregate impact across the network?

Panel A shows the results from lending networks. Panel B shows the results from bor-

rowing networks.
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The systemic risk multiplier

To understand systemic risk, we want to understand both the total risk to the system λ,

as well as the contributions of each agent to that risk. We begin with the total risk.

Table 2 shows our measure of systemic risk λ, which simply converts the estimates of our

target parameter φ into λ = 1/(1−φ). As highlighted in the theoretical model, the parameter

φ captures the strength of network interactions that stems from the network architecture.

This strength is easily interpreted as the quantity of loans that are re-lent or re-borrowed

into the network. For example, in the simplest case, if bank i lends $100 to bank j and j

relends $50 to bank k, and bank k to bank s, the φ parameter will equal 0.5.

To see how this converts into a measure of systemic risk, notice that in a complete network

(one in which every agent is connected to every other), a parameter of 0.5 implies that each

loan of $100 is re-lent in some proportion to every other bank such that the total re-lent

is 50%. One can show then that the multiplier effect, the total re-lent for each $1 lent is

calculated as λ = 1/(1−φ). Why? Because the first dollar was relent out at .5, that .5 out at

.25, etc. The infinite sum converges to λ = 1/(1− φ). Of course, the total effect is precisely

what we wish to understand as a measure of the amplification of a shock to a given agent.

If φ = 0.5 each $1 change will be amplified on aggregate 2 times, λ = 1/(1− 0.5) = 2.

In the incomplete networks that we study, risk is propagated through the network via

realized loans. In such a context, the impact of a given bank must pass through a limited

number of other agents, as described by the transaction pattern. As the effect dissipates

in each successive link, the impact on directly connected agents is necessarily greater (see

equation 7). One can see then that for directly connected agents, the impact of systemic
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risk is much larger; being ‘close’to an impacted party leads to a greater risk of impact.14

Thus, while the aggregate impact is 2 times the initial shock, the maximum shock a bank

may face can be many times larger.

To understand the individual contribution to the total risk of the system, i.e. the diffusion

process across the network, we use our theoretical model, which considers explicitly the

network structure where each bank operates.

Individual contribution to systemic risk

Our behavioral framework shows that the equilibrium quantity choice is related to the

position of each bank within the network of loans, as captured by the Bonacich centrality,

and thus depends on the evolution of the network through the linking choices of each agent.

Accordingly to equation (7), we calculate the Bonacich centrality for each bank in our

networks. This calculation generates a distribution of individual centralities depending on

the strength of network interactions and on the heterogeneity of network links (as captured by

the estimate of φ and the matrix G in formula (7), respectively). This measure of individual

centrality provides regulators with an ability to understand which banks are the largest risk

to the system. Note that, according to this measure, the more central banks will not be the

most connected or the largest institution, but rather the one that contributes the most to

the propagation of shocks. This contribution to propagation depends not only on number

of links, but also on the number of links of connected agents, and their links and so on.

For example, a bank bridging two otherwise separate networks might be a key actor in the

diffusion of shocks even if it is connected with just two banks (each with many links). Not

14One can think of this as how banks’liquidity is impacted by the systemic risk in the network. A bank

will gain (lose) when the banks linked to her gain (lost). Below, in this section, we look at the extent to

which banks’liquidity is affected by changes in banks’centrality, which is a trasformation of the systemic

risk parameter (equation 7). That is, does it help to change position in the network?
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only the quantity but also the quality of contacts is crucial.

Table 2 shows two statistics, the first is the impact of a one-unit change in the Bonacich

centrality. The second is the variance of the Bonacich centrality. Our results shows that

the network structure as well as its influence on banks’outcomes vary greatly over time.

So, for example, a unit increase in Bonacich centrality, i.e. a better bank positioning in the

network, raises lending by about 6 million in 2004 (before the crisis), 32 million in 2006, and

2 million in 2009 (after the crisis). The one-unit impact of a change in individual centrality

moves significantly over time, as does the variance of individual centrality for each network.

This variance reflects the distributional impacts of a shock. As the variance of Bonacich

centrality changes, it reflects changes in how shocks are absorbed by the market. A high

variance suggests that a concentrated group of banks will absorb the total effect of the shock.

Example here are the contagious default model where successive agents bear the full cost of

the default and a zero variance case in which the shocks will be equally distributed across

all agents in the network. Table 2 shows that the variance of Bonacich is higher during the

crisis, indicating that the difference between the maximum and minimum shock absorbed by

the different banks rises.

Lending vs Borrowing

Even as we continue to capture the relevance of network structure, its role is not constant.

Why? As we approach crisis in 2006, the market was very, very liquid, but the central lenders

became increasingly important. The importance of centrality became very large; moving

from the periphery to the center meant very large changes in liquidity provision. These

changes were 4/5 times larger than in 2002/2003. With the onset of the crisis in 2007, and

particularly in 2008, the role of the central lenders declined.

35



The borrowing market looked a bit different. Here the importance of central players and

the variance of centrality both declined secularly over time, with a slight up-tick during the

crisis. We interpret this as the converse of the lending market. As lenders became more

centralized, borrowers became more dispersed, with many relying a few key lenders. As

the crisis hit and lenders dispersed, we begin to see some additional concentration on the

borrowing side.

Thus we view our results as illustrating that the model can explain the role of network

structure consistently over time, even as the market changes along many dimensions. The

first, the average impact on the network of a shock, is captured in our systemic risk estimates.

The second reflects the distributional impacts of a shock. As the variance of Bonacich

centrality changes, it reflects changes in how shocks are absorbed by the market. A high

variance suggests that a concentrated group of banks will absorb the total effect of the shock.

Examples here are the contagious default model where successive agents bear the full cost

of the default and a zero variance case in which the shocks will be equally distributed across

all agents in the network. The effect of the crisis in making networks more dispersed in the

lending market is well-captured by the huge drop in the importance of centrality and its

variance in 2009. In the lending market, the impact of network position and its variance

dropped by 17 and 7 times respectively.

5.3 Network formation

Our theoretical model of Section 4 provides a set of predictions for network structure that

depend on a single parameter. This result emerges because agents can adopt a very simple

link formation rule that depends only on the Bonacich centrality of the instantaneous network

structure. Because profits are greater when one links with those with higher Bonacich
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centrality, link formation patterns can be described in a parsimonious way.

That link formation is a function of profitability is crucial to understanding systemic risk

in the context of this type of model. The incentive process produces predictable network

patterns, as we discussed above. Thus, as a result, the model provides additional ability to

understand and explain systemic risk, over and above what would be feasible with reduced

form approaches.

The key parameter for determining network structure, is the probability of creating a

link, α. This parameter is exogenous to the dynamic model, and provides us with a way to

determine the effi cacy of the dynamic model in describing the observed pattern. Notice that

Proposition 2 describes the precise relations between the α and the degree distribution on

the entire network. Recall that the each agent has a degree, which is the count of number of

links to other agents. Recall as well that the degree distribution is simply the distribution

over agents in a particular network of their respective degrees. So, the model generates a

prediction for the degree distribution that is a precise function of α.

Figure 5 shows the theoretical degree distributions that are obtained when calibrating

the model for different values of α.

[Insert F igure 5 here]

Empirically the probability of creating a link (α) can be estimated by considering the

ratio between the number of actual links and the possible ones (in a given network).

Figure 6 shows the estimated values of α on a daily basis between 2002 and 2009.15

The graph thus shows that at the beginning of the period (January 2002) the estimated

15If more than one network is detected in a given day, the average value of α is reported.
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link creation is about 0.4, whereas at the end of the period (December 2009) it has fallen

to about 0.25. Consistently with our results in the previous section, the fall reflects that

the network has become more sparse once the crisis took hold. This occurred both because

the ECB began to provided unlimited access to funds through its full allotment policy and

because market participants may have become less willing to lend.

[Insert F igure 6 here]

Figures 7a and 7b then plot the degree distribution in our data in different years and

the one which is predicted by our model for the corresponding α value. Figure 7a shows

α = 0.4, corresponding to January 2002 and Figure 7b shows α = 0.25, corresponding to

December 2009. The important evidence revealed by these two figures is that the dynamic

model captures the change in degree distribution that occurs as a result of the crisis. As the

networks become more sparse (α declining), the incentives to form new links change. We

can see in these two figures that the change network formation behavior observed in these

markets is closely matched by the model’s predictions.

[Insert F igures 7a and 7b here]

Figure 8 shows that this close alignment between model and data occurs over the entire

time period. We plot the percentage of banks having 0 links for 250 networks over the 8 year

time period (zero degree component of the corresponding degree distributions). A perfect

prediction would yield a 45 degree line; here we find a slight divergence, but a very consistent

ability of the model to predict the network structure in the data.
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[Insert F igure 8 here]

This ability is not just confined to banks having one link but pertains to the entire

degree distribution. Indeed, accompanying these three figures, we regress the observed degree

distribution on the predicted one. We break our data in approximately 250 time periods.

Each observation in our regression then corresponds to a time period, degree pair. So,

an observation may be time period 25, degree 10. For this observation, we will have the

estimated and the theoretically predicted percentage of banks with 10 links. Regression

results are reported in Table 3. The model goodness of fit provides a more accurate test of

our theoretical model against the data.

[Insert Table 3 here]

Column 1 of Table 3 shows the regression on the entire sample. This specification has

an R-squared of 0.79. Column 2 includes a level shift for each of the 50 possible degrees.

By viewing each of the degree separately, the specification explains more than 98% of the

variation in the data. To evaluate whether this approach is successful before or after the

crisis, or both, we break the sample at August 2007 and run our regression before and after

August 2007. Post August 2007, the model explains essentially all of the variation.16

That the model produces distributions that are empirically so close to the data supports

the ability of the static model to generates estimates of systemic risk that are plausible. In

particular, it allows us to claim that our results take into account the incentive of agents to

change partners.
16Our results remain mainly unchanged if we include time-fixed effects.
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6 Extension to heterogeneous banks and prices

To this point, our model has assumed that agents are identical in every dimension except for

their network position. In this section, we extend our model to allow for variation along two

dimensions. The first is in demand, our parameter θ, which we generalize to θi. The second

is to allow for bank-specific default risk. We introduce di to reflect the bank-specific default

risk premium paid by a bank for a loan on the interbank market. We assume here that this

risk premium is publicly observable and has no uncertainty. This class of models can also

permit uncertainty; however, we save a full elaboration of this for future work.

6.1 Equilibrium loans

Allowing for heterogeneity means we can rewrite equation (2) above as:

pi = θi + di −
∑
j∈N

qj

This means that the interest rate (i.e. price) pi of each loan is going to be bank specific.

This implies that the profit function of each firm i in network g can be written as:

πi(g) = ai qi −
∑
j∈N

qiqj + φ
n∑
j=1

gijqiqj

where ai ≡ θi + di − c0. The first-order condition for each i is:

q∗i = ai −
∑
j∈N

q∗j + φ

n∑
j=1

gijq
∗
j (17)

To characterize the Nash equilibrium of this new game, we need to generalize Definition

1 of the Katz-Bonacich centrality (see (7)). Indeed, the weighted Katz-Bonacich centrality

of parameter φ in g is defined as:

b(g, φ) =
+∞∑
k=0

φkGku = [I−φG]−1 u (18)
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where φ ≥ 0 is a scalar and u can be any n × 1 vector. When u = 1, then we are back to

the unweighted Katz-Bonacich centrality defined in (7).

Define b1 (g, φ) = b1,1 (g, φ) + ... + bn,1 (g, φ) as the sum of the unweighted Bonacich

centralities and ba (g, φ) = a1b1,a + .... + anbn,a as the sum of weighted Bonacich centralities

of all banks. Then, using Calvó-Armengol et al. (2009), we can derive the following result:

Proposition 3 Suppose that a 6= a1. Let a = max {ai | i ∈ N} and a = min{ai | i ∈ N},

with a > a > 0. If φω(G) + n (a/a− 1) < 1, then this game has a unique Nash equilibrium

in pure strategies q∗, which is interior and given by:

q∗ = ba (g, φ)−
ba (g, φ)

1 + b1 (g, φ)
b1 (g, φ) (19)

Let us show how we obtain this result. We can write the first-order condition (17) in

matrix form:

q∗ = a− Jq∗ + φGq∗

where J is a n× n matrix of 1. Since Jq∗ = q∗1, this can be written as

q∗ = [I− φG]−1 (a− q∗1)

= ba (g, φ)− q∗b1 (g, φ)

Multiplying to the left by 1t and solving for q∗ gives:

q∗ =
ba (g, φ)

1 + b1 (g, φ)

Plugging back q∗ into the previous equation gives (19).
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6.2 Equilibrium volatility

Ex-ante heterogeneity enables us to provide specific loan pricing at the bank level. The

equilibrium price of a loan for each bank is:

p∗i = θi + di −
∑
j∈N

q∗j

This allows us to characterize price volatility in equilibrium. Here our measure of volatil-

ity is the standard deviation of prices during the day in which the given network is active.

The volatility vol(g) can then be expressed as:

vol(g) = V arprices(g) =
1

n

n∑
i=1

(p∗i − p∗)
2

where p∗ = 1
n

∑n
i=1 p

∗
i is the average price in the loan market during the day.

Let us illustrate this result by using Example 1 (Section 3.3) described above. After

tedious calculations, which we derive in Appendix 3, the prices and volatility of the circle

and star networks are noticeably different:

pC∗ = 1.270 and pS∗ = 2.510

volC∗ = V arC∗prices = 0.0192 and vol
S∗ = V arS∗prices = 3.562

This shows that the star-shaped network experienced a much larger volatility than the circle

network.

7 Extension to revenue spillovers

Our spillover mechanism through the cost channel is not the only mechanism through which

networks can have an impact. Let us now assume that there are revenue spillovers due to
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network effects. We generalize the model above and maintain our prior assumption that

there are network effects in the cost function, i.e. ci(g), is still given by (3):

ci(g) = c0 − φ1

[
n∑
j=1

gijqj

]

We will also assume that there are network effects on the revenue side, i.e.

θi = φ2

n∑
j=1

gijθj

so that

pi = θi −
∑
j∈N

qj = φ2

n∑
j=1

gijθj −
∑
j=1

qj

The interpretation of this spillover would be that the more a bank gives loans to other banks

the higher is the interest rate (price) of the loans. The profit function of each bank i in a

network g is therefore given by:

πi(g) =

(
φ2

n∑
j=1

gijθj −
∑
j=1

qj

)
qi −

(
c0 − φ1

[
n∑
j=1

gijqj

])
qi

=

(
φ2

n∑
j=1

gijθj − c0

)
qi −

∑
j=1

qiqj + φ
n∑
j=1

gijqiqj

First-order condition gives:

qi = φ2

n∑
j=1

gijθj − c0 −
∑
j=1

qj + φ1

n∑
j=1

gijqj

Denoting q∗ =
∑
j=1

qj, we can write this first-order condition in matrix form as

q = φ2Gθ − (c0 + q∗)1+ φ1Gq

which is equivalent to

q = [I− φ1G]
−1 φ2Gθ − (c0 + q∗) [I− φ1G]

−1 1

= [I− φ1G]
−1 bφ2Gθ (g, φ1)− (c0 + q∗)b1 (g, φ1)
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We are back to the previous section case with ex ante heterogeneity and can again apply

Proposition 3. Denote αi = φ2
∑n

j=1 gijθj − c0 and let α = max {αi | i ∈ N} and α =

min{αi | i ∈ N}, with α > α > 0. Then if φ1ω (G) + n (α/α− 1) < 1, there is a unique

Nash equilibrium which is interior and given by:

q∗ = bφ2Gθ (g, φ1)−
bφ2Gθ (g, φ1)

1 + b1 (g, φ1)
b1 (g, φ1) .

While the solution is more complex than the single spillover above, notice that the general

form of the equilibrium quantities remains. As above, one can calculate prices and volatility

directly from this equation.

8 Discussion and policy implications

Our approach is designed to understand the role of network structure on interbank lending.

As with any model and data, there are some limitations to the exercise. For example,

while our data is exceptional in providing comprehensive coverage of the European interbank

market during most of the time period studied, e-MID particular role in the market limits the

capacity of the model to explain some shocks. Because e-MID is transparent, and European

banks have access to the ECB for emergency borrowing purposes, e-MID evolved as a way

to balance relatively small liquidity shocks. Larger structural shocks would be dangerous to

post on a public platform and access to the ECB provided an alternate outlet. As such, our

results should be seen as a way to analyze shocks and network impacts on the margin. That

said, this should indicate that increases in systemic risk in this market would understate the

level of risk in the market as a whole.

From a policy perspective, we emphasize the utility of using a structural approach to

networks. To the extent that the model captures bank behavior, it allows policymakers the
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ability to test interventions with an eye both to how banks will optimize in the short-run

and how networks will form and re-form under each assumption.

An example is how one can interpret in our model the imposition of the ECB’s full allot-

ment policy. This policy permitted banks to access credit lines from the ECB in unlimited

quantities at a fixed rate. We can model this by removing many higher risk banks from

the market. It is a straightforward result of the static model that this will lower average

demand, Eθi, in this market and well as reduce average risk, Edi.

A second example is the use of exceptional capital cushions for SIFIs. Our approach

allows one both to identify the SIFIs that are the largest contributors to systemic risk,

λi, and what occurs if these banks have increased, and now binding, capital constraints.

To identify the largest contributors, the static model indicates simply that the banks with

the highest Bonacich centrality are those with the highest contribution. Their share of

contribution is calculated above as well.

An alternate approach, which takes into account how the network changes as a result

of a shock to an institution is beyond the scope of this paper. However, related work by

Liu et al. (2012), has found that the because of network dynamics, the largest contributor

is not always the one with the highest centrality. This can occur depending on the type of

intervention as well as depending on the precise nature of the network.

Using this information, an avenue for future research would be to evaluate optimal reg-

ulatory policy in the presence of networks. Given a particular objective function for the

regulator, such as minimizing volatility or minimizing total systemic risk, the approach here

could yield a set of capital constraints that solve the regulator’s problem. Notice that these

constraints would not necessarily have any of the cyclicality problems that a static, fixed

constraint does. For example, the regulator could optimize over contribution to systemic
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risk over a period of time that includes recessions. Then, a capital cushion that depends on

the contribution to risk and position in the network would vary against the cycle.

9 Conclusion

We have constructed two models of the interbank loan market, a static and dynamic one. To

complement these, we have provided empirical evidence of the models’accuracy in describing

the data. Then, using these models, we have presented a measure of systemic risk in this

market, which is a precise measure of the aggregate liquidity cost of a reduction in lending by

an individual financial institution. This systemic risk measure is presented as an innovation

vis-a-vis existing approaches. It is based on the foundation of a microfounded dynamic

model of behavior. As well, it provides a tool to understand the transmission of shocks that

extends beyond default events and generalized price shocks. In the combination of these lies

our tool; the competitive responses that banks make generate the transmission of shocks in

our model and provide a tractable method of measuring and understanding systemic risk.

There are a number of tangible benefits to the models and methods presented in this

paper. The calculation of spillovers in interbank markets gives regulators an ability to gauge

the market’s sensitivity to shocks. We find multiples that grow as large as 2.5 times the

initial reaction.
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Appendix: Theoretical results

Appendix 1: Nash equilibrium in loans

Katz-Bonacich centrality

Let Gk be the kth power of G, with coeffi cients g[k]ij , where k is some integer. The matrix

Gk keeps track of the indirect connections in the network: g[k]ij ≥ 0 measures the number of

paths of length k ≥ 1 in g from i to j.17 In particular, G0 = I.

Given a scalar φ ≥ 0 and a network g, we define the following matrix:

M(g, φ) = [I−φG]−1 =
+∞∑
k=0

φkGk

where I is the identity matrix. These expressions are all well-defined for low enough values

of φ. It turns out that an exact strict upper bound for the scalar φ is given by the inverse of

the largest eigenvalue of G (Debreu and Herstein, 1953). The parameter φ is a decay factor

that scales down the relative weight of longer paths. If M(g, φ) is a non-negative matrix,

its coeffi cients mij(g, φ) =
∑+∞φk

k=0 g
[k]
ij count the number of paths in g starting from i and

ending at j, where paths of length k are weighted by φk. Observe that since G is symmetric

thenM is also symmetric.

Nash Equilibrium and Katz-Bonacich centrality

Let us show how the first order condition can be written as a function of Katz-Bonacich

centrality. For each bank i = 1, ..., n, maximizing (4) leads to:

q∗i = a−
n∑
j=1

q∗j + φ

n∑
j=1

gijq
∗
j (20)

17A path lof length k from i to j is a sequence 〈i0, ..., ik〉 of players such that i0 = i, ik = j, ip 6= ip+1, and

gipip+1 > 0, for all 0 ≤ k ≤ k − 1, that is, players ip and ip+1 are directly linked in g. In fact, g[k]ij accounts
for the total weight of all paths of length k from i to j. When the network is un-weighted, that is, G is a

(0, 1)−matrix, g[k]ij is simply the number of paths of length k from i to j.
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We can write this equation in matrix form to obtain:

q∗ = a1− Jq∗ + φGq∗

where J is a n× n matrix of 1. Since Jq∗ = q∗1, this can be written as

q∗ = [I− φG]−1 (a− q∗)1

= (a− q∗)b (g, φ)

Multiplying to the left by 1t and solving for q∗ gives:

q∗ =
ab (g, φ)

1 + b (g, φ)

where b (g, φ) = 1tb (g, φ). Plugging back q∗ into the previous equation gives

q∗ =
a

1 + b (g, φ)
b (g, φ)

which is (8).

Example

Consider the following network with three banks.

t t t
2 1 3

The corresponding adjacency matrix is,

G =

 0 1 1

1 0 0

1 0 0

 ,
The kth powers of G are then, for k ≥ 1:

G2k =

 2k 0 0

0 2k−1 2k−1

0 2k−1 2k−1

 and G2k+1 =

 0 2k 2k

2k 0 0

2k 0 0

 .
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For instance, we deduce from G3 that there are exactly two paths of length three between

agents 1 and 2, which are 12→ 21→ 12 and 12→ 23→ 32.

When φ is small enough,18

M = [I−φG]−1 = 1

1− 2φ2

 1 φ φ

φ 1− φ2 φ2

φ φ2 1− φ2


and the vector of Katz-Bonacich network centralities is:

b(g, φ) =

 b1 (g, φ)

b2 (g, φ)

b3 (g, φ)

 = 1

1− 2φ2

 1 + 2φ1 + φ

1 + φ


Not surprisingly, the center (bank 1) is more central than the peripheral banks 2 and 3.

The Nash equilibrium is then given by (using (??)):

q∗ =

 q∗1
q∗2
q∗3

 = a

4 (1 + φ)
(
1− 2φ2

)
 1 + 2φ1 + φ

1 + φ



Appendix 2: Network externality on loan equilibrium

The first order condition is:

q∗i = a−
n∑
j=1

q∗j + φ

n∑
j=1

gijq
∗
j

or in matrix form

q∗ = a1− Jq∗ + φGq∗

where J is a n× n matrix of 1. Since Jq∗ = q∗1, this can be written as

q∗ = a1− q∗1+ φGq∗

18Here, the largest eigenvalue of G is
√
2, and so the exact strict upper bound for φ is 1/

√
2.
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Multiplying to the left by 1t, we get

q∗ =

(
n

1 + n

)
a+

(
φ

1 + n

)
1tGq∗

or equivalently:

qNET∗ =

(
n

1 + n

)
a+

(
φ

1 + n

) n∑
i=1

n∑
j=1

gijqj (21)

By plugging back this equation into the first-order condition, we obtain:

qNET∗i =
a

(1 + n)
+ φ

n∑
j=1

gijq
∗
j −

(
φ

1 + n

) n∑
i=1

n∑
j=1

gijqj

which is equivalent to:

q∗i =
a

(1 + n)
+

(
n

1 + n

)
φ

n∑
j=1

gijq
∗
j −

(
1

1 + n

)
φ

n∑
k 6=i

n∑
j=1

gkjq
∗
j (22)

Appendix 3: Volatility calculation for circle and star networks

Specifying

θ =


0.5

0.8

0.1

0.9

 , d =


0.75

0.4

1.4

0.6

 and c0 =


0.2

0.1

0.5

0.3


we have

a =


1.05

1.1

1

1.2


The eigenvalue condition φω(G) + n (a/a− 1) < 1 can be written as: φ < 0.2. This is an

upper bound so φ can still be greater than 2. For the circle network, the Bonacich centralities,

unweighted and weighted, are respectively given by:

bC1 (g, φ) =
1(

1− φ3 − φ4
)

1 + φ+ 2φ2 + φ3

1 + 2φ+ 2φ2 + φ3

1 + φ+ φ2

1 + φ+ φ2 + φ3


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bCa (g, φ) =
1

20
(
1− φ3 − φ4

)

21 + 22φ+ 44φ2 + 24φ3

22 + 44φ+ 45φ2 + 21φ3

20 + 24φ+ 21φ2 + 2φ3

24 + 21φ+ 22φ2 + 20φ3


and the equilibrium loan quantities by:


qC∗A
qC∗B
qC∗C
qC∗D

 =


18 + 17φ+ 39φ2 + 6φ3 − 35φ4 − 56φ5 − 63φ6 − 24φ7

23 + 45φ+ 49φ2 − 2φ3 − 68φ4 − 94φ5 − 70φ6 − 21φ7

13 + 22φ+ 15φ2 − 11φ3 − 35φ4 − 37φ5 − 17φ6 − 2φ7

33 + 27φ+ 29φ2 − 13φ3 − 60φ4 − 56φ5 − 49φ6 − 20φ7


20
(
1− φ3 − φ4

) (
50 + 50φ+ 60φ2 + 2φ3 − φ4

)
For the star-shaped network, we have:

bS1 (g, φ) =
1

1− φ


1

1 + φ

1

1



bSa (g, φ) =
1

1− φ


21+24φ−φ2
20(1+φ)

1.1 (1 + φ)
5+6φ
5(1+φ)
6+5φ
5(1+φ)


and 

qS∗A
qS∗B
qS∗C
qS∗D

 = 1

1− φ


0.02

(
9 + 4φ− 13φ2

)
/ (1 + φ)

0.23− 0.02φ− 0.21φ2

0.01
(
13 + 8φ− 21φ2

)
/ (1 + φ)

0.01
(
33− 12φ− 21φ2

)
/ (1 + φ)


Thus the price for each bank for a loan are given by:
pC∗A
pC∗B
pC∗C
pC∗D

 = 1

20
(
50 + 50φ+ 60φ2 + 2φ3 − φ4

)

1163 + 1139φ+ 1368φ2 − 17φ3 − 25φ4

1113 + 1089φ+ 1308φ2 − 19φ3 − 24φ4

1413 + 1389φ+ 1668φ2 − 30φ4 − 7φ3

1413 + 1389φ+ 1668φ2 − 30φ4 − 7φ3


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for the circle network and by
pS∗A
pS∗B
pS∗C
pS∗D

 = 1

1 + φ


0.38 + φ+ 0.91φ2 + 0.21φ3

0.33 + 0.95φ+ 0.91φ2 + 0.21φ3

0.63 + 1.25φ+ 0.91φ2 + 0.21φ3

0.63 + 1.25φ+ 0.91φ2 + 0.21φ3


for the star-shaped network.

The mean price in each network is given by:

pC∗ =
5102 + 5006φ+ 6012φ2 − 50φ3 − 109φ4

80
(
50 + 50φ+ 60φ2 + 2φ3 − φ4

)
and

pS∗ =
1.97 + 4.45φ+ 3.64φ2 + 0.84φ3

1 + φ

and therefore the variances of prices are:

volC∗ = V arC∗prices = 0.0192

volS∗ = V arS∗prices =
2.2 + 9.9φ+ 19.23φ2 + 20.09φ3 + 11.66φ4 + 3.44φ5 + 0.40φ6

(1 + φ)2

For φ = 0.2, we have:
qC∗A
qC∗B
qC∗C
qC∗D

 =

0.0185

0.0273

0.0144

0.0318

 and


qS∗A
qS∗B
qS∗C
qS∗D

 =

0.193

0.272

0.143

0.310


and 

pC∗A
pC∗B
pC∗C
pC∗D

 =

1.158

1.108

1.408

1.408

 and


pS∗A
pS∗B
pS∗C
pS∗D

 =

0.515

0.465

0.765

0.765


Also,

pC∗ = 1.270 and pS∗ = 2.510

volC∗ = V arC∗prices = 0.0192 and vol
S∗ = V arS∗prices = 3.562
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Figure 1: Bank balance sheet
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Interbank 
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Figure 2: Daily Lending Quantities

Figure 4 shows daily lending quantities over the sample for overnight and longer term lending. The black solid line reports overnight lending quantities. The grey dashed line reports all other lending. 

Each has a 2 month moving average trend added.
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Figure 3: Daily Price Volaility

Figure 5 reports the daily standard deviation of prices (taken over prices during the day and normalized). The price volatility itself is reported in a grey dashed line and the 2-month moving average 

reported in a black solid line.
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Figure 4: Circle and star directed networks
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Figure 5: Dynamic Model : Theoretical Degree Distribution

alpha=0.25

alpha=0.3

alpha=0.4

alpha=0.45

Figure 6 shows the theoretical degree distribution of the dynamic network formation model in the paper For each level of α (link formation probability), the model general an invariant distribution of

network links. Precise invariant distribution is described in the text: n(d)=((1-2α)/(1-α))((α/(1-α)))^{d}, where n is the proportion at end degree. We report these distributions for α={.25, .3, .4, .45}.
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Figure 6: Estimated Link Formation Probability (Alpha) 

Figure 7b shows the estimated probability of link formation for each network. Recall that we use a network definition of 1 day as a benchmark. 
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Figure 7a: Empirical vs Theoretical Degree Distribution – January 2002

empirical distribution

theoretical distribution

Figure 8a shows the empirical degree distribution of the network that existed on January 9, 2002. On the same figure, we plot the theoretical distribution generated by the empirical link formation

probability on that day.
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Figure 7b: Empirical vs Theoretical Degree Distribution - Dec 2009

empirical distribution

theoretical distribution

Figure 8b shows the empirical degree distribution of the network that existed on December 31, 2009. On the same figure, we plot the theoretical distribution generated by the empirical link formation

probability on that day.
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R² = 0,6229
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Figure 8: Dynamic Model: Model Fit

Pre-Crisis

Figure 8c shows a scatterplot of two variables. The first (on the horizontal axis) is the fraction of one-degree participants in network (1 day) in our dataset. The second (on the vertical axis) is the

fraction of one-degree participants implied by our dynamic model, conditional on the α for that given network. Recall that α is the empirical probability of link formation. A 45% line implies that the

model works perfectly and a high correlation implies that the model is consistent over a wide range of network structures.
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2002 2003 2004 2005 2006 2007 2008 2009

Overnight Lending Only

Average Daily Volume (mm euros) 10 046 9 666 10 458 9 577 8 912 7 615 6 028 3 669
Daily standard dev of volume 1 321 1 860 1 360 1 389 1 563 1 146 1 389 816
Daily standard dev of prices 0,12 0,35 0,09 0,09 0,38 0,23 0,53 0,46
Number of Loans 130 614 114 844 104 393 97 551 90 370 86 453 75 933 52 743

largest 25 lenders in 2002
Total Lending (mm euros) 1 634 1 913 2 162 2 033 2 109 1 326 346 181
Fraction of total 16% 20% 21% 21% 24% 17% 6% 5%
Number of loans 14 755 14 766 15 793 14 645 14 759 9 408 2 635 1 701

Panel B
All Lending

Average Daily Volume (mm euros) 17 892 18 369 21 258 22 412 24 745 22 835 13 731 5 516
Daily standard dev of volume 2 606 3 940 4 028 3 580 4 662 6 262 3 628 1 810
Daily standard dev of prices 0,11 0,34 0,08 0,09 0,38 0,23 0,53 0,47
Number of Loans 166 139 143 562 129 082 124 444 118 548 110 596 93 069 60 124

largest 25 lenders in 2002
Total Lending (mm euros) 2 370 2 975 2 800 2 946 2 587 1 697 1 210 32
Fraction of total 13% 16% 13% 13% 10% 7% 9% 1%
Number of loans 15 108 17 669 14 774 13 085 11 254 6 222 3 626 176

Table 1: Summary Statistics
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2002 2003 2004 2005 2006 2007 2008 2009

Lending Networks

Network effects (φ) 0,577 0,569 0,544 0,546 0,547 0,550 0,530 0,494
    t - statistic 3,373 3,266 2,950 2,976 2,989 3,008 2,792 2,414

R-Squared 0,220 0,310 0,230 0,210 0,280 0,220 0,210 0,230

Average Systemic Risk Multiplier ( λ) 2,36 2,32 2,19 2,20 2,21 2,22 2,13 1,98

Impact of Unit Change in Centrality 13,86 7,89 5,69 25,40 31,82 42,10 31,70 1,75
Variance of Centrality 42,50 55,75 29,37 203,54 202,15 118,46 94,29 14,58

2002 2003 2004 2005 2006 2007 2008 2009

Borrowing Networks

Average φ Coefficient 0,591 0,567 0,541 0,549 0,528 0,527 0,488 0,478
    t - statistic 3,583 3,246 2,936 3,009 2,789 2,819 2,431 2,268
  
R-Squared 0,260 0,270 0,340 0,210 0,280 0,310 0,120 0,180

Average Systemic Risk Multiplier - λ 2,44 2,31 2,18 2,22 2,12 2,12 1,95 1,92

Impact of Unit Change in Centrality 59,82 21,05 8,64 6,16 21,57 27,99 21,26 5,61
Variance of Centrality 28,32 3,74 0,29 0,71 3,33 4,85 3,67 0,09

Table 2: Interbank Network Systemic Risk

Note: Panel A shows results from the lending networks. Panel B shows results from the borrowing networks. Each of the two panels shows estimation results from model (14). We report the average estimates for each year between 2002 and 2009. Recall 
that model (14) estimates the relationship: q_{i,κ}=c+φ(1/(g_{i.,k}))∑_{j=1}^{n_{ κ}}g_{ij, κ}q_{j, κ}+υ_{i,κ}  , i.e. the spatial autoregression of individual loan volume on the network patterns of the loan volume of the rest of the market. Network 
fixed effects are included. The adjacency matrix of realized trades is a symmetric, non-directed matrix of 1's and 0's with 1's indicating the presence of a loan and 0 the absence. The first row shows the estimates of the parameter φ, the systemic risk 
measure, from the above specification. T-statistics are reported below coefficient estimates.  The average systemic risk multiplier λ is the total network impact of a one unit shock to an individual bank loan volume. Summing across the impact for all 
individuals in the network produces this number,  which is equal to 1/(1-φ). Individual centrality is measured using Bonacich centrality (equation 7). 

Panel A

Panel B
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(1) (2) (3) (4) (5) (6)
sample all all post-crisis pre-crisis post-crisis pre-crisis

Theoretical Distribution 0.838*** 0.254*** 0.816*** 0.852*** 0.436*** 0.120***
(0.00369) (0.00346) (0.00474) (0.00504) (0.00763) (0.00477)

Constant 0.0146*** 0.0111*** 0.0173***
(9.59e-05) (0.000186) (0.000121)

Degree Fixed Effect no yes no no yes yes

Observations 12,699 12,699 3,570 9,129 3,570 9,129
R-squared 0.803 0.986 0.893 0.758 0.992 0.986

Table 3: Dynamic Model Fit

Note: The table shows OLS estimation results obtained from regressing the empirical degree distribution on model-predicted degree distribution. We simply calculate the fraction of 0,1,…,n degree nodes  using the 
dynamic model from the text and the data at each point in time. We break our data in approximately 249 time periods. Each observation in our regression then corresponds to a time period, degree pair. So, an 
observation may be time period 25, degree 10. For this observation, we will have the estimated and the theoretically predicted percentage of banks with 10 links. Column 1 of table shows the regression on the entire 
sample.  Column 2 includes a level shift (fixed effect) for each of the 50 possible degrees. Columns 3 and 4 break the sample into pre-crisis and post-crisis time periods. Columns 5 and 6 show pre- and post- crisis 
with a fixed effect by degree. OLS specifications in model 1, 3 and 4 have no constant as implied by the model.
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